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Summary

The digital data has become a key resource for solving scienƟĮc and business problems and achieving
compeƟƟve advantage. With this purpose the scienƟĮc and business communiƟes worldwide are
trying to extract knowledge from data available to them. The Ɵmely use of data signiĮcantly aīects
scienƟĮc progress, quality of life, and economic acƟvity.

In the digital age the eĸcient processing and eīecƟve data analysis are important challenges.
The processing of data in main memory can boost processing eĸciency especially if it is combined
with new soŌware system architectures. At the same Ɵme useful and usable tools are required for
analysing main memory data to saƟsfy important use cases not met by database and programming
language technologies.

The uniĮed management of the memory hierarchy can improve the processing of data in main
memory. In this architecture the communicaƟonbetween the diīerent parts of thememory hierarchy
is transparent to the applicaƟons and opƟmizaƟon techniques are applied holisƟcally. The data Ňow
in the memory hierarchy so that the ones that will be processed shortly are closest to the �Öçs and
programming languages treat temporary and permanent data of any type uniformly. As a result, new
data analysis systems can be developed that take advantage of faster main memory data structures
over disk-based ones for processing the data leaving the memory hierarchy to care for the availability
of data.

The absence of suitable analyƟcal tools hinders knowledge extracƟon in cases of soŌware appli-
caƟons that do not need the support of a database system. Some examples are applicaƟons whose
data have a complex structure and are oŌen stored in Įles, eg scienƟĮc applicaƟons in areas such as
biology, and applicaƟons that do notmaintain permanent data, such as data visualizaƟon applicaƟons
and diagnosƟc tools. Databases oīer widely used and recognized query interfaces, but applicaƟons
that do not need the services of a database should not resort to this soluƟon only to saƟsfy the need
to analyze their data.

Programming languages on the other hand rarely provide expressive and usable query interfaces.
These can be used internally in an applicaƟon, but usually they do not oīer interacƟve ad-hoc queries
at runƟme. Therefore the data analysis scenarios they can support are standard and any addiƟons or
modiĮcaƟons to the queries entail recompiling and rerunning the applicaƟon.

In addiƟon to solving problems modeled by soŌware applicaƟons, data analysis techniques are
useful for solving problems that occur in the applicaƟons themselves. This is possible by analyzing the
metadata that applicaƟons keep in main memory during their operaƟon. This pracƟce can be applied
to any kind of system soŌware, such as an operaƟng system.

This thesis studies the methods and technologies for supporƟng queries on main memory data
and how the widespread architecture of soŌware systems currently aīects technologies. Based on
the Įndings from the literature we develop amethod and a technology to perform interacƟve queries
on data that reside inmainmemory. Our approach is based on the criteria of usefulness and usability.
AŌer an overviewof the programming languages that Įt the data analysiswe choose ÝØ½, the standard
data manipulaƟon language for decades.

The method we develop represents programming data structures in relaƟonal terms as requires
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ÝØ½. Our method replaces the associaƟons between structures with relaƟonships between relaƟonal
representaƟons. The result is a virtual relaƟonal schema of the programming data model, which we
call relaƟonal representaƟon.

The method’s implementaƟon took place on the � and �++ programming languages because of
their wide use for the development of systems and applicaƟons. An addiƟonal reason why �++ was
chosen is the availability of a large number of algorithms and data structures that it oīers. The imple-
mentaƟon includes a domain speciĮc language for describing relaƟonal representaƟons, a compiler
that generates the source code of the relaƟonal interface to the programming data structures given
a relaƟonal speciĮcaƟon, and the implementaƟon of ÝØ½ite’s virtual table �Ö®. ÝØ½ite is a relaƟonal
database system that oīers the query engine and the ability to run queries to non-relaƟonal data
through its virtual table �Ö®.

The implementaƟon expands to the development of two diagnosƟc tools for idenƟfying prob-
lems in soŌware systems through queries to main memory metadata related to their state. � as the
implementaƟon language of many soŌware systems is ideal for the applicaƟon of this idea. For this
purpose we incorporate our implementaƟon in the Linux kernel. Important implementaƟon aspects
that we address is synchronized access to data and the integrity of query results. We also apply our
approach to expand the diagnosƟc capabiliƟes of Valgrind, a system that controls the way that soŌ-
ware applicaƟons use memory.

The overall evaluaƟon of our approach involves its integraƟon in three �++ soŌware applicaƟons,
in the Linux kernel, and in Valgrind, where we also perform a user study with students. For the study
we combine qualitaƟve analysis through quesƟonnaire and quanƟtaƟve analysis using code mea-
surements. In the context of the �++ applicaƟons the performance measurements between Öi�Ê Ø½
queries and the corresponding queries expressed in �++ show that ÝØ½ combined with our relaƟonal
representaƟon provides greater expressiveness. The same happens when we compare our approach
with ÝØ½ aŌer imporƟng the data into a MyÝØ½ relaƟonal database system. The eĸciency of our ap-
proach is worse than �++ and beƩer than MyÝØ½. The queries with our approaches need twice as
long Ɵme to run compared with �++ regardless of the problem’s size. The ÝØ½ queries in MyÝØ½ re-
quire double, triple, or more Ɵme to execute compared to our approach.

In the context of the Linux kernel where our relaƟonal interface funcƟons as a diagnosƟc tool we
Įnd real problems by execuƟng queries against the kernel’s data structures. Access to Įleswithout the
required privileges, unauthorized execuƟon of processes, the idenƟĮcaƟon of binaries that are used
in loading processes but are not used by any, and the direct execuƟon of system calls by processors
belonging to a virtualmachine are the security problemswe idenƟfy. In addiƟonwe showqueries that
combine metrics from diīerent subsystems, such as pages in memory, disk Įles, processor acƟvity,
and network data transfers, which can help idenƟfy performance problems. The measurement of
query processing Ɵme and the added overhead to the system encourage the use of our tool.

The diagnosƟc tool we developed for Valgrind detects problems, addiƟonal to those found by
Valgrind, through the use of quesƟons in the collected metadata of the applicaƟon being tested. The
bzip2 tool for instance wastes nine hundred »� where all the memory cells are consecuƟve in a single
pool. This size is equivalent to twelve percent of the total memory that the applicaƟon needs to
operate. Through queries on the dynamic funcƟon call graph formedduring an applicaƟon’s execuƟon
we Įnd a code path that is performance criƟcal. It is located in the glibc library and is widely used by
the sort and uniq Unix tools. This opƟmizaƟon was implemented by glibc’s development team and
was included in the next version without our contribuƟon.

Finally, in the user study the one group expresses analysis tasks with ÝØ½ queries and the other
with Python code. The results show that the Ɵme required for the expression of an analysis job is
smallerwhen ÝØ½ is used. On the contrary no staƟsƟcally signiĮcant diīerences are observed between
the two approaches in terms of usefulness, eĸciency, and expressiveness, although our approach
has a higher raƟng. For the dimension of usability the evaluaƟons demonstrated no clear winner, but
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both approaches achieved very good evaluaƟon. The evaluaƟon of the ÝØ½ group code’s performance
shows that the ÝØ½ group had more correct replies achieved with less Ɵme of programming. We
consider this metric indicaƟve of our approach’s usefulness vis a vis Python, which is also widely
used for data analysis. We also consider the Ɵme required for the expression of an analysis task as a
usability factor.

The challenges to the processing of data conƟnue to emerge at an unabated pace. In this environ-
ment soŌware applicaƟons require soluƟons for the analysis of user data, but also to solve problems
relaƟng to their operaƟon. The processing of data in main memory can bring important beneĮts in
combinaƟon with other innovaƟons. In this direcƟon new architectures that beneĮt the eĸcient pro-
cessing of data can play an important role. We hope that this thesis will aid the eĸcient processing
and eīecƟve data analysis expected by users.



Chapter 1

IntroducƟon

1.1 Context

Today’s systems employ mulƟple levels of control for various data management aspects, such as
querying, naming, access control, storage reclamaƟon, and organisaƟon. An indicaƟve example con-
cerns the programming language and the Įle system, both of which manage storage and perform
buīering. This separaƟon of concerns in the convenƟonal architecture accounts for double system
workload, independent opƟmisaƟon of memory levels, and increased system soŌware development
costs. The current trend of establishing standard interfaces for clean communicaƟon between mod-
ules, isolated in their own corners with local authority, is shortsighted.

Data management has become a crucial aspect of system operaƟon, yet we conƟnue to walk
along lines drawn decades ago. We trust programming languages to deliver data resident in main
memory, uƟlise explicit operaƟng system calls to access Įles on disk, and rely on translaƟon code to
access database data. Wemanage data diīerently with respect to their longevity, we underuƟlize our
memory hierarchy as well as impose increased soŌware applicaƟon development costs.

An alternaƟve approach embraces a data model where transient and persistent data share a uni-
form representaƟon while data of any type may persist for as long as it is required and data persis-
tence is independent of the storage medium. This approach provides direct access to data without
the intermediaƟon of expensive operaƟng system calls. Data move automaƟcally across the mem-
ory hierarchy smartly and binaries can execute for both transient and persistent data. The hierarchy
of memory is abstracted into a single-level store [KELS62] where no funcƟonality repeats itself. This
design allows each system funcƟon to be implemented and applied at a single level, such as query
processing and garbage collecƟon, which concern the virtual memory system as a unity. This ap-
proach follows the principles of orthogonal persistence [ABC+83], which entails a uniĮed data model
across the hierarchy of memory (no translaƟon layer), for the whole data lifecycle (no special manipu-
laƟon of persistent data), for all data types (no ineligible data types), for all storage media. This thesis
does not present an orthogonally persistent system nor is orthogonal persistence a crucial aspect of
our work. However, we draw part of our moƟvaƟon for carrying out this work from the concept of
orthogonal persistence. Therefore, we consider useful to examine it in the related work chapter.

Query systems can beneĮt from advancements in main memory processing in that they can op-
erate with main memory data structures, which are faster than disk-based ones and provide more
opportuniƟes for opƟmisaƟon [Spi10b]. However, the support for querying main memory data pro-
vided by current programming languages and database systems leaves something to be desired. This
thesis examines the characterisƟcs of main memory query systems designed and implemented for
the convenƟonal architecture that is adopted by most systems nowadays and studies the architec-
tural properƟes of orthogonal persistence. It presents a main memory query system that is useful
in the context of the convenƟonal architecture and could prove to be also useful in an orthogonally

1
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persistent system.

1.2 Problem statement

The problem this dissertaƟon aƩempts to solve is how to query main memory data in a useful and
usable manner. The answer to this quesƟon can provide the speciĮcaƟons of the query service for
an architecture that adheres to the principles of orthogonal persistence. Such an architecture is de-
scribed in the previous secƟon. Besides its potenƟal of use, a query service for main memory data
is important today to data analysts for obtaining user deĮned views from an applicaƟon’s data and
to system administrators for diagnosing problems with a system’s operaƟon using its metadata. Al-
though queries to main memory data are possible, the query service comes with deĮciencies.

Queries to applicaƟon data can be provided by database management systems (��ÃÝ). ��ÃÝs
complement applicaƟons with an �Ö® and a standard query language to manage data [Ree00, San98].
They oīer an important set of properƟes, namely atomicity, consistency, isolaƟon, and durability
(known as ��®�) and expressive, powerful views on database data. Outsourcing an applicaƟon’s data
management to a ��ÃÝ is the typical design opƟon, but one size does not Įt all [SC05].

Many applicaƟons do not require a fully-Ňedged ��ÃÝ. Such applicaƟons either do all their pro-
cessing completely online, or store their data using bespoke Įle formats. This can be a sound design
choice, for program data may be stored in data structures provided by the programming language; in
fact, most modern languages oīer a collecƟon of such data structures accompanied by algorithm im-
plementaƟons to traverse andmanipulate them. Examples include the �++ Ýã½ library and the Java.uƟl
containers. While containers are opƟmized for storing objects and running algorithms, they do not
oīer an easy means to perform ad-hoc queries on program objects stored in them in the powerful
way databases do. This leads to situaƟons where lengthy custom code has to be wriƩen for querying
container objects or, worse, where the programmer has to introduce unnecessary dependencies to
a ��ÃÝ just for improving in-memory data querying capabiliƟes of a program.

Systems, such as operaƟng systems and applicaƟon systems, require a wide variety of diagnosƟcs
checks to maintain integrity, ensure security, and opƟmize performance. The available tools of the
trade are typically event-based [CSL04, PCE+05]. This kind of instrumentaƟon is useful for resolving
many issues, but there are situaƟons where the state of the system provides an advantageous view
to the problem at hand that event instrumentaƟon cannot tell. A trivial example regards querying
a system’s open Įles. InstrumenƟng system calls to open() for a speciĮc Ɵme window in order to
observe open Įles will probably not output the complete list of open Įles in the system, only those
that were opened during the instrumentaƟon.

1.3 Proposed soluƟon and contribuƟons

Our proposed soluƟon is a method and an implementaƟon for represenƟng an arbitrary imperaƟve
programming data model as a queryable relaƟonal one. The Pico COllecƟons Query Library (Öi�Ê Ø½)
uses a domain speciĮc language to deĮne a relaƟonal representaƟon of applicaƟon data structures,
a parser to analyse the deĮniƟons, and an ÝØ½ interface implementaƟon.

The implementaƟon of Öi�Ê Ø½ imposes a minimal overhead to the program and the programmer,
as most of the tedious eīort of wrapping a data structure in an ÝØ½ view is done through metapro-
gramming, while a domain speciĮc language (�Ý½), which follows the style of the ÝØ½ data deĮniƟon
statements, allows the speciĮcaƟon of data structures to be queried. Öi�Ê Ø½ has been developed for
�/�++ and can provide a live relaƟonal view of arbitrary main-memory data structures.

Our thesis provides the following contribuƟons.
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• A method for mapping an imperaƟve programming data model into a relaƟonal one to provide
querying of in-memory object graphs using ÝØ½ and an ÝØ½ relaƟonal query processor

• AdemonstraƟonof themethod’s validity through the implementaƟonandevaluaƟonof Öi�ÊØ½,
a library that supports interacƟve ÝØ½ queries against data structures of �/�++ applicaƟons

• A diagnosƟc tool to extract relaƟonal views of the Linux kernel’s state at runƟme; each view is
a custom image of the kernel’s state deĮned in the form of an ÝØ½ query.

• A diagnosƟc tool that extends theMemcheck, Cachegrind, and Callgrind uƟliƟes of the Valgrind
instrumentaƟon framework for analysing an applicaƟon’s memory proĮle through ÝØ½ queries

• A user study that compares the Öi�Ê Ø½ interacƟve ÝØ½ interface to a Python scripƟng interface

1.4 Research methodology

The research method followed throughout this thesis is shown in the çÃ½ diagram of Figure 1.1.
The Įrst step in the method regards choosing the area of interest for this thesis by means of

exploring ideas and studying the literature in a number of areas of systems’ research. The area of
uniform data management emerged from this process. Then focused study of this area revealed
opportuniƟes for research, which in turn gave birth to the problem statement of this thesis.

With the problem at hand, the method for the relaƟonal representaƟon was conceived followed
by the design of Öi�Ê Ø½. Then an examinaƟon of the various available implementaƟon technologies
for the implementaƟon of Öi�Ê Ø½ pointed to � and �++. The reasons for this decision are grounded on
thewide use of � in system seƫngs and the popularity of �++ for developing systems and sophisƟcated
applicaƟons. In addiƟon, �++ oīers an impresssive array of libraries with data structure and algorithm
implementaƟons.

Pi�Ê Ø½’s evaluaƟon followed its implementaƟon. The evaluaƟon began with three �++ applica-
Ɵons. Next Öi�Ê Ø½ was Įt into the Linux kernel as a loadable module and was evaluated as a kernel
diagnosƟc tool. Finally, experience with users was evaluated compared to Python scripƟng on the
basis of analysing memory proĮles produced by the Valgrind instrumentaƟon framework.

The evaluaƟon of Öi�Ê Ø½ triggered circles of redesign and implementaƟon unƟl Įƫng the criteria
of usefulness and usability.

1.5 Thesis outline

This dissertaƟon consists of six chapters. We outline the remaining Įve below.

In Chapter 2 we present the related work on uniform data management, programming language
support for queries on the language’s data structures, and diagnosƟcs tools for operaƟng and
applicaƟon systems.

In Chapter 3 we present our method for the relaƟonal representaƟon of arbitrary data structures in
relaƟonal form and the design of the Öi�Ê Ø½ ÝØ½ query library.

In Chapter 4we detail the implementaƟon of Öi�Ê Ø½, which provides ÝØ½ queries on data structures
of the � and �++ programming languages.
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Figure 1.1: The research methodology followed
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InChapter 5wedescribe the evaluaƟonof Öi�ÊØ½ on the Linux kernel, three �++ applicaƟons, and the
Valgrind instrumentaƟon system. For the Linux kernel we implemented Öi�Ê Ø½ as a loadable
kernelmodule in order to query kernel data structures, such as the list of acƟve processes in the
system. The evaluaƟon includes a user experiment where students use the Öi�Ê Ø½ interface
and a Python scripƟng interface to analyse memory proĮles produced by Valgrind tools.

Finally, in Chapter 6we present the conclusions of this thesis and discuss possible avenues for future
work.



Chapter 2

Related Work

Our work on query interfaces for program data covers the areas of orthogonal persistence (Sec-
Ɵon 2.1), programming language support for queries on data structures (SecƟon 2.2), and diagnosƟc
tools (SecƟon 2.3). Figure 2.1 presents a map of the state of the art related to our thesis and lists
signiĮcant pieces of work in each one.

Figure 2.1: Map of research work related to this thesis

Query interfaces

Orthogonally 
persistent query 
interfaces

Query interfaces 
in traditional 
systems

DBMS query 
interfaces
ObjectStore[LLOW91],
Cricket[SZ90],
POMS[CAC+84]
(Sec. 2.1.5.3, 2.1.6.3) 

Programming
language query 
interfaces
Galileo[ACO85], 
PJava[ADJ+96], 
S-Algol[ABC+83]
(Sec. 2.1.5.2, 2.1.6.2)

DBMS query 
interfaces
Daytona[Gre99], 
JPQL[KS09],
ScalaQL[SZ10]
(Sec. 2.2.1.1, 2.2.1.3, 
2.2.2.1)

Programming
language query 
interfaces
LINQ-to-objects[MBB06],
RelC[Haf+11], OQL[CB00], 
JQL[WPN06], SETL[SDS86]
(Sec. 2.2.1.2, 2.2.1.4, 2.2.2.3)

Query interfaces 
for analytics

Query interfaces 
for diagnostics

Kernel-level
DTrace[CSL04],
Systemtap[PCE+05],
LTTng[DD06]
(Sec. 2.3.2)

User-level
Recon[LSZE11],
PTQL[GOA05]
PQL[MLL05]
(Sec. 2.3.3)

6
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2.1 Orthogonal persistence

Orthogonal persistence entails a uniĮed data model across the hierarchy of memory (no translaƟon
layer), for the whole data lifecycle (no special manipulaƟon of persistent data), for all data types
(no ineligible data types), for all storage media. Systems that adhere to these principles are called
orthogonally persistent. We invesƟgate orthogonal persistence within three contexts, the operaƟng
system, programming systems, and the storage system. For brevity we refer to these systems as
persistent operaƟng systems, persistent programming systems, and persistent stores throughout this
secƟon. RespecƟvely, the term persistent system stands for an orthogonally persistent one.

Our study on persistent systems concerns those that provide transacƟons and/or distributed pro-
cessing. This decision is basedon two reasons. First, thewide demand for transacƟons anddistributed
processing from applicaƟonsmakes these two aspects important to study. Second, providing transac-
Ɵons and distributed processing in the paradigm of orthogonal persistence oīers exciƟng challenges.
We compare and contrast persistent systems on four dimensions namely persistence implementaƟon,
data deĮniƟon and manipulaƟon language, stability and resilience, and protecƟon.

In the secƟons that follow we provide background informaƟon on orthogonal persistence (sec-
Ɵon 2.1.1), describe in detail the scope of our study (secƟon 2.1.2), present exisƟng surveys on the
subject (secƟon2.1.3), and list the dimensions thatweuse to examinepersistent systems (secƟon 2.1.4).
Furthermore, in secƟons 2.1.5 and 2.1.6 we describe the exisƟng work on orthogonal persistence. Fi-
nally, in secƟon 2.1.7 we present performance opƟmisaƟons for persistent systems.

2.1.1 Background

Orthogonal persistence is no new concept. The decades of 80s and 90s, for the most part, saw the
rise of a new research paradigm that promoted uniformmanipulaƟon of data, that is, systems where
the use of the data is orthogonal to their persistence [AM95]. Orthogonal persistence is described in
terms of three principles [ABC+83]:

• persistence independence

dictates that data manipulaƟon is uniform for both transient and persistent data. Behind the
scenes data move automaƟcally across the hierarchy of storage devices in a uniform format.
Consequently, applicaƟons are not concerned with programming data transfers in and out of
main memory and translaƟng between diīerent data representaƟons.

• data type orthogonality

regards a complete datamodel that is independent of the data’s persistence. ApplicaƟons need
not disƟnguish between data types that are eligible or ineligible to persist.

• persistence idenƟĮcaƟon

denotes how the idenƟĮcaƟon of persistent data is performed. This has to be transparent to
the programmer and independent of the type system.

The Įrst aspect related to orthogonal persistence is the single level store devised in 1962 where
data transfers across the hierarchy of memory levels are undertaken by the system in a manner that
is transparent to the programmer. Two decades later, PS-Algol is born, a persistent programming
language, and the principles of orthogonal persistence are stated. A few years later automaƟc garbage
collecƟon is linked with orthogonal persistence where orphan data, either transient or persistent,
are garbage collected by the system. At the same Ɵme a crash recovery mechanism for a persistent
memory system is presented.
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The Įrst trails of orthogonal persistence can be traced in the distant past. In 1962, Kilburn et
al [KELS62] devised the single-level storage to describe the pracƟce of treaƟng memory as a uniform
resource. They describe an automaƟc system that appears to employ a single level of storage as
opposed to its actual two-level central store hierarchy. InformaƟon Ňows automaƟcally between the
two levels without explicit I/O.

The central store is a combinaƟon of core store and drum store. When an address is not found
in core store, the drum store, and tape store are searched in turn to retrieve the requested memory
block. Hence, the drum store and tape store communicate with the machine via the main core store.
Although the authors defend single level storage in terms of the central store, the approach seems to
operate with success in successive levels such as the tape store. Emphasis is paid to the automated
data transfer between the levels of the memory hierarchy.

Twenty years later, Atkinson et al [ABC+83] extend the Ý-�lgol language with features to support
persistence and introduce the principles of orthogonal persistence. First, data objects can persist the
execuƟon of a program irrespecƟve of their type (data type orthogonality). Second, the same coding
constructs can be applied to objects either transient or persistent (persistence independence) and,
third, the idenƟĮcaƟon of persistence is independent of the selecƟon of data objects at the language
level. These principles consƟtute a uniĮed programming model.

The result is ÖÝ-�lgol, an orthogonally persistent language, where the determinaƟon of persis-
tence is leŌ to the system and is based on object reachability. PÝ-�lgol is designed to aīect minimally
the underlying language. As such, ÖÝ-�lgol contributes standard funcƟons implemented by means of
funcƟonal extensions to Ý-�lgol. The outcome of the endeavour is a language with very low adopƟon
cost from the Ý-�lgol community that addresses persistence using already established methods of
data preservaƟon, that is by referencing data with their name.

Type checking in ÖÝ-�lgol is carried out by the system and is based on the type informaƟon that
each structure holds. Following programming experience with the language, the authors argue that
the abstracƟon of persistence contributes a signiĮcant reducƟon in development Ɵme, source code
size, and soŌware maintenance due to the embracement of a uniĮed programming model.

In 1986, ThaƩe [Tha86] describes a persistent memory system with a crash recovery mechanism
based on a uniform memory abstracƟon implemented on a large, virtual address space. The system
provides uniform treatment of data irrespecƟve of their longevity, where persistence is implemented
in terms of reachability from a persistent root. Objects not reachable from the transient root or the
persistent root are garbage collected. As such, object persistence is orthogonal to object types and
storage media. Recovery from system crashes is achieved with a checkpoinƟng scheme, which saves
system state, and a rollback scheme, which restores the state of the last checkpoint following a crash.
To support resilience, an undo and a redo log are uƟlised to achieve Įner data restoraƟon aŌer the
last checkpoint.

2.1.2 Scope

Our study targets orthogonally persistent systems. The noƟon creates a set of requirements in the
context of an operaƟng system on the one hand and another set in the context of programming and
data management systems.

• Along the lines of [ABC+83] programming systems and data management systems are consid-
ered orthogonally persistent if:

– they employ auniformprogramming/storagemodel for data irrespecƟveof their longevity
In our data-centric era, data may need to persist the end of the applicaƟon program or
mulƟple versions of the applicaƟon program or even the support system that accommo-
dates data. It is irraƟonal to impose special manipulaƟon for persistent data. In persistent
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systems data access should be independent of the storage medium, i.e. there should not
exist a storage medium that requires special manipulaƟon to access. In pracƟce, access
to data in cache, Ù�Ã, hard disk etc. should be manipulated alike.
In addiƟon, the loss of uniformity creates a mismatch between the programming model
and storagemodel. One instanceof this situaƟon is the notorious object-relaƟonal impedance
mismatchwhere speciĮc interfaces are used to access relaƟonal databases from program-
ming languages and translate result sets into objects. Another case of mismatch concerns
the transformaƟon of Įle contents into main memory data structures. The soluƟon, a
translaƟon layer, amounts to 30% of the applicaƟon code wriƩen [ABC+83].

– data share the same rights to persistence irrespecƟve of their type
This principle states that persistent systems should not have data types ineligible for per-
sistence or data types that require special treatment to persist.

• According to Vaughan et al. [VD92] persistent operaƟng systems entail the following aspects.

– persistent object management along with the relaƟonships between them

– transparent and reliable management of the hierarchy of memory

– persistent processes

– protecƟon of objects through access control

The convenƟonal operaƟng system architecture has separate funcƟons for Įle management
and memory management, which reŇect the management of persistent and transient data re-
specƟvely. Persistent operaƟng systems unify the two. In the convenƟonal architecture, the
twomodules behave autonomously and implement one ormore datamanagement taskswithin
their boundaries. Policies opƟmised to Įt a certain, sub-systemic goal is the general pracƟce.
As a result, a task may happen mulƟple Ɵmes in the course of data movement within the hi-
erarchy of memory thereby increasing system workload. Storage management is an indicaƟve
example performed by both the programming language and the Įle system.

Persistent systems implement the above aspects at a single point and apply policies system-
wide. Consequently, they reduce system workload, opƟmise performance systemically, have
less complex modules, and lower soŌware producƟon costs.

2.1.3 Surveys on orthogonal persistence

Four surveys [DRH+92, DH00, AM95, DKM10] have documented and summarised problems, progress,
and achievements in the area of orthogonal persistence. The Įrst two focus at the support that per-
sistent systems require from the operaƟng system. SpeciĮcally, the Įrst notes the reasons why tra-
diƟonal operaƟng systems can not support orthogonal persistence, and lays out the fundamental
dimensions for persistent operaƟng systems. The second studies the appropriateness of both tradi-
Ɵonal operaƟng systems and persistent operaƟng systems to support persistent systems, but pro-
poses a new class of operaƟng systems in view of the deĮciencies of both the exisƟng classes. The
third survey targets the applicaƟon level and, speciĮcally, the support required from programming
systems and data management systems for developing persistent applicaƟon systems. The last sur-
vey examines the support for orthogonal persistence provided by modern programming language
systems.

In their arƟcle [DRH+92], the authors research the requirements that persistent operaƟng sys-
tems raise and reason why operaƟng systems to date are inconvenient vehicles for the cause. They
ground their examinaƟon on four dimensions namely addressing, stability and resilience, process
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management and security, explain the persistence implicaƟons in each of these areas, and sketch
the structure of a persistent operaƟng system.

Regarding addressing, the authors argue that soŌware address translaƟon and memory mapped
Įles can help implement a uniform addressing scheme as required by orthogonal persistence. How-
ever, both have shortcomings. The former is simple but slow, while the laƩer does not support re-
silience.

Resilience and stability of a persistent store can be achieved primarily bymeans of shadow paging.
Experiments with two stabilised versions of the address mapping tables cerƟfy that atomic updates
can happen in a secure manner. Moreover, checkpoint operaƟons that move the persistent store
between stable states are adequate but impose a heavy load on performance. ImplementaƟons are
described that reduce this eīect mainly through idenƟfying and updaƟng only modiĮed pages.

Process management in a system that employs orthogonal persistence poses signiĮcant chal-
lenges. A single logical shared address space, which directly uƟlises the address translaƟon hard-
ware, is the desired soluƟon according to the authors. The lightweight thread model employed by
modern operaƟng systems can be used, but it does not oīer protecƟon at the process level. Pos-
sible soluƟons for this concern are type secure programming languages, protecƟon at the storage
level, mulƟple persistent address spaces, and page-level protecƟon to isolate access by threads. The
shortcomings carried by each of these soluƟons are decsribed.

The survey of [DH00] examines the inabiliƟes of tradiƟonal operaƟng systems to become vehicles
for persistent systems. SpeciĮcally, operaƟng system support:

• is insuĸcient to manage persistent objects and their interrelaƟonships

• provides limited abstracƟons for resilience since the control over the swapping locaƟon is lim-
ited

• obstructs the construcƟon of persistent processes through their inappropriate protecƟon and
naming and inaccessible process metadata

However, although persistent operaƟng systems to date are explicitly designed and constructed
to provide the necessary abstracƟons for orthogonal persistence, these abstracƟons mismatch with
the abstracƟons required by persistent applicaƟon systems.

The authors argue that a new class of operaƟng systems is required, which moves much of the
responsibility of the operaƟng system to the applicaƟon system based on the following principles.

• Flexibility in construcƟon of applicaƟon systems

• Low kernel-user level coupling

• Ease of wriƟng synchronisaƟon mechanisms

• Independence of operaƟng system authority

The Charm [HD98] operaƟng system follows the above principles. It provides no thread or process
model but autonomous addressing environments, the basis for the construcƟon of arbitrary concur-
rency models. Sharing and protecƟon are controlled by each persistent applicaƟon system.

The third survey [AM95] presents the moƟvaƟon for persistent applicaƟon systems and describes
the importance and beneĮts of integraƟng the programming language perspecƟve with the database
and Įle system perspecƟve through the persistence abstracƟon.

The authors explore four architectures regarding the support of persistent object systems:

• combinaƟon of exisƟng systems
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• extension of exisƟng systems

• explicit integrated system design

• persistent operaƟng systems

The authors review the design principles for such systems and discuss how each architecture can
support the principles of orthogonal persistence stated in secƟon 2.1.1. Thorough descripƟon of the
technology and the achievements towards the adopƟon of persistent object systems is given.

The last survey [DKM10] provides a review of programming language support for the uniform
treatment of objects independently of their longevity and data type. The arƟcle emphasises the
object-relaƟonal impedancemismatch and the beneĮts of orthogonal persistence (secƟon 2.1.1). The
authors refer to approaches, such as MicrosoŌ’s ½®ÄØ, towards orthogonal persistence and specify
their orthogonality by measuring the level of adopƟon of the principles detailed in secƟon 2.1.1.

2.1.4 Dimensions of persistent systems

We use four dimensions to compare and contrast systems that exhibit characterisƟcs of orthogonal
persistence in response to four quesƟons presented below. Since we study orthogonally persistent
systems, the Įrst quesƟon, which regards the implementaƟon of persistence, emerges naturally. The
same holds for the second quesƟon that concerns the data management interface supported by a
persistent programming system or a persistent store. The last two quesƟons come from [DRH+92]:

1. How does the system implement persistence?

One of the main characterisƟcs of orthogonal persistence is the uniform manipulaƟon of tran-
sient and persistent data and the availability of persistence to all data types. How the system
implements these requirements is an important aspect. This dimension regards the persistent
storage module and its organisaƟon for preserving the data representaƟon.

2. What language does it use for data deĮniƟons and manipulaƟon (��½, �Ã½)?

The ��½ and the �Ã½ show how data management is provided by the system. The previous
dimension regards the implementaƟon of persistence. This dimension is concerned with the
manipulaƟon of persistence and other aspects, which happen through the ��½ and the �Ã½.
These twodimensions should be independent in a persistent system. The aspect of data queries
is of parƟcular interest in this dimension.

3. How does the system support stability and resilience?

Resilience is a property of fundamental importance for a persistent system. The persisted ob-
jects are not independent as is the case with Įles in a convenƟonal Įle system, but relate to
other objects. Thus, the loss of one object can have profound impact on the integrity of the
overall system.

4. How does the system ensure data protecƟon?

Due to the uniform addressing of transient and persistent objects that orthogonal persistence
entails, data protecƟon is a major challenge. ProtecƟon mechanisms at the programming level
(compilers), process level (address space organisaƟon, page access), and storage level (capabil-
iƟes) are proposed.
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System type Level QuesƟons
Persistent operaƟng system System 1, 3, 4
Persistent programming system ApplicaƟon 1, 2, 4
Persistent store ApplicaƟon 1, 2, 3, 4

Table 2.1: Types of persistent systems examined and quesƟons applicable to them

2.1.4.1 Persistence implementaƟon

Persistent systems implement persistence mainly in two ways, using soŌware address translaƟon or
memory-mapped Įles. SoŌware address translaƟon makes it possible to translate a main memory
address to a secondary storage address and vice versa with the aid of the virtual memory system.
Some systems require that the acƟvaƟon of a persistent structure happens in the samemain memory
area as the iniƟal one. This is an important restricƟon but not so much for the current generaƟon of
64-bit systems due to their huge address space. Nevertheless, there are techniques to overcome this
constraint, e.g. by making references relaƟve.

Memory mapped Įles allow a mapping to happen between their on-disc representaƟon and a
process’s address space. As such, a process gains access to a Įle on disc without implemenƟng the
expensive seek and read system calls. Instead, the paging mechanism retrieves pages not present in
the process space on demand. Dirty pages are wriƩen back to the Įle’s original locaƟon on the disk in
a lazy manner, i.e when the page in main memory is replaced. Reading and wriƟng to persistent Įles
happens transparently without user intervenƟon. Memory-mapped Įles obviate the need to convert
between data representaƟons.

2.1.4.2 Data deĮniƟon and manipulaƟon language

The ��½ and �Ã½ can be oīered by a general-purpose programming language extended to promote
persistence. However, the type system should not reŇect this extension as this would disagree with
the second principle of orthogonal persistence, i.e all data types have a right to persistence. Persistent
programming languages designed from scratch for persistent systems also exist.

2.1.4.3 Stability and resilience

Two ways to achieve stability and resilience are the implementaƟon of transacƟons borrowed from
the database community and shadow paging. The Įrst way is appropriate for persistent systems built
on top of convenƟonal architectures that use Įles as their unit of abstracƟon. A transacƟon log is
used to record transacƟons and roll back to a stable state aŌer a failure.

Shadow paging ensures a persistent store’s integrity through the uƟlisaƟon of memory mapped
Įles and virtual memory. Its core concept is the mapping table, which maps the virtual addresses
of the persistent store to physical disk addresses. Shadow paging maintains a consistent state of the
data and themapping table that is updated aŌer each checkpoint operaƟon. The consistent state can
be used to recover from a system failure.

2.1.4.4 ProtecƟon

ProtecƟon in a system regards the integrity of data, their durability, and access control. Durability and
integrity can be achieved by introducing persistent stores and stability mechanisms such as a log.

Access control can be provided through compilers, mulƟple address spaces, page access control,
and capabiliƟes [DVH66]. Compilers in type secure programming languages can enforce protecƟon
through the language’s type system if the system is to support a single programming language. At the
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process level, mulƟple persistent address spaces can safely separate a process’s working area from
another’s. This approach requires communicaƟon mechanisms to provide processes with a sharing
channel. AlternaƟvely, restricƟng access on a per page basis can allow processes to coexist without
trust issues in a single address space. At the storage level, capabiliƟes can be used, which encapsulate
the rights for accessing a persistent object. They are provided to eligible users upon the creaƟon of
an object and secure the users’ permission to access it.
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Table 2.2: Systems that adhere to orthogonal persistence

System Type
(OS/-
PL/PS)

Trans-
acƟons/
Distri-
buted

Persistence implementaƟon DDL/DML Stability & re-
silience

ProtecƟon

Grass-
hopper
[DdBF+94]

OS T single-level store, commit
pages to stable store

X consistent data
copies in subsets,
persistent kernel

capabiliƟes

Keykos
[BFH+92]

OS T single-level store, checkpoint
modiĮed pages coarsely, com-
mit pages synchronously

X system wide
checkpoints,
page-level jour-
naling, persistent
kernel

capabiliƟes

Galileo
[ACO85]

PL T assumes a persistent environ-
ment is present

Galileo’s ��½, for
comprehensions
on class extents

atomic transac-
Ɵons, undo when
failure strikes

staƟc type check-
ing, abstract types
match types with
operaƟons on val-
ues

PJava
[ADJ+96]

PL T transiƟve persistence: objects
reachable from a persistent
root

persistent store
class, Java’s ��½
and �Ã½ for
objects

checkpoint mech-
anism

Java type system,
class informaƟon
in stable store

Java
cards
[ST06]

PS T persistent memory (Ňash) for
objects, atomic and serialised
data access

CreateNewObject,
GetField, PutField

transacƟons, un-
do/redo log

-

Cricket
[SZ90]

PS TD single-level store through
memory mapping

- transacƟons with-
out recovery

capabiliƟes

ÖÊÃÝ
[CAC+84]

PS T soŌware translaƟon via
pointer swizzling, persistent
objects of any type reachable
from a persistent root

PS-Algol shadow paging passwords

Clouds
[DLAR91]

OS DT single-level store using
mapped Įles

X transacƟons,
replicaƟon across
nodes

data encapsu-
laƟon within an
address space

Napier88
[Mun93]

PL DT soŌware address translaƟon
between local and stable heap

create, update,
and delete objects

transacƟons,
shadow paging

none, read, write,
or execute access
control to pages

Ý«ÊÙ�
[CDF+94]

PL DT soŌware address translaƟon:
pointer swizzling

language generic:
Ý«ÊÙ� deĮniƟon
language simi-
lar to Ê�½, �++
binding

transacƟons, redo
a client’s work at
server

object access con-
trol component

Object-
store
[LLOW91]

PS DT memory-mapped architec-
ture, single-level store using
the virtual memory system,
persistence as a storage class,
object storage

�++ statements,
object relaƟon-
ships, queries on
collecƟons, asso-
ciaƟve queries,
indexes, opƟmiser

two-phase com-
mit transacƟons,
object versioning,
write-ahead log

set no/read/write
access for individ-
ual pages through
the ÊÝ’Ý virtual
memory system,
staƟc type check-
ing applied to
persistent objects
too

ÝÖÊÃÝ
[MDRK93]

PS D memory mapped store,
compiled-class: language
agnosƟc storage unit

- - capabiliƟes dis-
tributed when
an object is cre-
ated and used to
control access to
objects
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2.1.5 Persistent systems performing transacƟons

From resilient operaƟng systems with lower management costs to the simplicity of programming
systems that secure the data’s integrity automaƟcally, persistent systems that perform transacƟons
lower soŌware producƟon and systemmanagement costs and provide an advanced quality of service.
For each system we present in Table 2.2 the research undertaken in terms of persistence implemen-
taƟon, data management, stability and resilience, and protecƟon.

2.1.5.1 Persistent operaƟng systems

Persistent operaƟng systems present an appropriate architecture and the necessary primiƟves for
the support of persistent systems. In addiƟon, some persistent operaƟng systems oīer resilience
to failures by recording their state in Įxed intervals and recovering it aŌer a failure. RepresentaƟve
examples are Grasshopper [DdBF+94] and the Keykos nanokernel [BFH+92]. They both rely on capa-
biliƟes for enforcing access control and employ mulƟple address spaces. In terms of persistence and
resilience, Grasshopper uses a two-phase commit protocol to persist Įrst the user data and then the
kernel itself. Keykos, on the other hand, combines a coarse system-wide checkpoint mechanism and
a journaling mechanism for stabilising the system’s state in Įner intervals.

Grasshopper is an operaƟng systemexplicitly designed to support orthogonal persistence. Grasshop-
per employs a fully parƟƟoned address space model where processes execute in a parƟƟon and have
access only to the data available in that parƟƟon. ParƟƟons are called containers. Containers are the
only storage abstracƟon, replacing the noƟons of Įles and address spaces. Loci, on the other hand,
replace processes. At any given Ɵme, a locus can only access data inside the container it is execuƟng.
A container with program code, mutable data, and a locus composes a basic running program. Con-
tainers and loci are orthogonal. The interacƟon between containers and loci in Grasshopper follows
the procedure oriented model where a locus invokes a container.

Managers, which are similar to external page handlers of the Mach operaƟng system, provide
access to the kernel pages of data stored in the container, handle page-faults, receive data extorted
from main memory, and maintain non-Ù�Ã resident data. Managers decide the format to store data
and abstract over storage media. They only can understand the diīerence between temporary and
persistent data. Managers are ordinary programs and reside in their own containers.

Sharing data is possible through mappings between the containers where a container’s region is
mapped to another container. Container mappings are composable. The resulƟng hierarchy can form
a directed acyclic graph that is managed by the kernel.

Access control over containers and loci is provided by capabiliƟes. A capability binds an enƟty
with a name, holds the access rights for that enƟty, and deĮnes whether the capability itself can be
copied. The advantages of using capabiliƟes are that they deĮne unique names for enƟƟes and that
they cannot be forged. CapabiliƟes in Grasshopper are stored in a protected memory region.

Finally, the store’s stability is maintained in consistent subsets with no dependencies between
them. Managers stabilise the data under their responsibility in turn. The consistent data copy created
can be used for recovering the data in case of a system failure. The kernel is itself persistent. It
stabilises its state aŌer all managers complete the stabilise operaƟon and commits the new system
state.

Keykos is an object-oriented nanokernel implemented in �. It is resilient to failures, of advanced
security, and of high availability. ImplementaƟons of Keykos have been developed for a number of
operaƟng systems, such as System/370 and Unix. In Keykos each process runs in each own segment,
the equivalent of an address space. A segment consists of pages or other segments. Segments also
replace the funcƟon of Įles in tradiƟonal operaƟng systems. In Keykos interprocess communicaƟon
relies on message passing and access control to objects is based on capabiliƟes.

Persistence in Keykos is the rule rather than the excepƟon. Only the nanokernel disƟnguishes
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between main memory and disk. Registers, virtual memory, and applicaƟons persist and are resilient
to failures. From an applicaƟon viewpoint, objects reside in a persistent virtual memory and only the
nanokernel knows the disƟncƟon between main memory and secondary storage. The single-level
store model of Keykos reduces complexity.

Stability and resilience are achieved through a checkpoint scheme and a journaling mechanism.
The checkpoint scheme records system-wide snapshots every fewminutes. It cooperates closely with
the paging system and ensures that updated Įles and processes in the system are wriƩen to the
checkpoint area on disk. For Įner stability and resilience, Keykos also includes a journal mechanism
that provides advanced transacƟon processing. The mechanism commits pages synchronously and
links them with the last checkpoint. This way, if failure occurs, the pages will be consistent aŌer the
system restarts.

2.1.5.2 Persistent programming systems

Persistent programming systems take care of the data’s persistence automaƟcally. This style of pro-
gramming where a programmer does not deal with the persistence of the data is termed persistent
programming. Some languages, such as Galileo [ACO85] and PJava [ADJ+96], oīer an environment
for persistent programming with transacƟonal support. The laƩer is implemented on top of Java. The
two approaches implement persistence diīerently. Galileo assumes the presence of an environment
that manages the data’s persistence transparently, while PJava uses transiƟve persistence where all
persistent objects can be reached from a persistent root. Galileo deĮnes a conceptual schema for
persistent programming with rich support of object-oriented features. Data queries take the form
of for comprehensions on the collecƟons of objects of a speciĮc type. In addiƟon to the common
object interface of Java, the data deĮniƟon language of PJava includes creaƟng a persistent store and
geƫng a persistent root. The data manipulaƟon commands are pure Java. For type protecƟon, both
approaches rely on the base language’s type system; Galileo has a strong type system, which borrows
features from Ã½. PJava stores an object’s class informaƟon with it and checks that it is cast to an
appropriate type when it is retrieved from the persistent store. For data protecƟon against failures,
Galileo and PJava use transacƟons. When failure strikes, Galileo rolls back the eīects of incomplete
transacƟons, whereas PJava uses its checkpoint mechanism to recover a consistent state.

Galileo is a strongly-typed, interacƟve funcƟonal programming language that borrows features
from Ã½. It is an expression language where a construct takes values as input and provides a value.
Galileo combines programming language and database features to provide a semanƟc data model for
supporƟng persistent applicaƟons.

Galileo’s data deĮniƟon language supports object-oriented features, that is the classiĮcaƟon of
enƟƟes with common characterisƟcs in a class, the generalisaƟon of classes that share a parent-child
relaƟonship, the modularisaƟon of data and operaƟons, class extents, associaƟons by means of ag-
gregaƟon, and abstract types.

The language employs uniform treatment of transient and persistent data, without resorƟng to
special manipulaƟon for persistent data. Persistence in Galileo relies on a global environment, which
is managed by the system that supports the language, where all values automaƟcally reside.

For querying data, Galileo relies on class extents, sequences, and for comprehensions. A class
extent includes the instances of a class, which can be accessed successively through an iterable data
structure, such as a sequence. A for comprehension is a programming language construct that takes
an iterable data structure and operaƟons, such as Įlters or transformaƟons, and returns the collecƟon
of elements aŌer performing the operaƟons on them.

ProtecƟon in Galileo relies on staƟc type checking and abstract types. Each expression possesses a
type that can be decided staƟcally. This design allows idenƟfying type violaƟons. StaƟc type checking
facilitates tesƟng and provides execuƟon safety. In addiƟon, abstract types allow programs to be
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independent of changes in the data representaƟon and deĮne unique operaƟons for each type, which
can not be invoked by instances of other types.

Galileo supports single and compound atomic transacƟons. Single transacƟons include a single
expression; compoundones includemulƟple. Each expression at top level is a transacƟon. The system
deals with failures by rolling back the eīects of interrupted transacƟons.

PJava extends Java with database faciliƟes according to the principles of orthogonal persistence:

• all data types can persist (data type orthogonality)

• transient and persistent data are treated alike; there are no special code rouƟnes for persistent
data (persistence independence), and

• the idenƟĮcaƟon of persistent objects, along with their complete structure, is based on reach-
ability from a persistent root (persistence idenƟĮcaƟon).

The extended language, PJava works with a typical Java compiler that outputs standard class Įles.
Only the ¹òÃ has been tapped to provide automaƟc object fetching, persistence, transacƟons, and
recovery. To achieve prefetching, an object cache has been added.

PJava allows the decoupling of programming from consideraƟons related to persistence. Pro-
grams use two �Ö® calls for creaƟng a persistent store and geƫng a reference to its persistent root
respecƟvely. But themanipulaƟon of objects involves standard Java code. PJava uƟlises common Java
classes produced by the standard compiler. In an example applicaƟon used in [ADJ+96] only 18 lines
of code reference PJava’s persistence �Ö® explicitly out of a total of 7690 lines of code.

PJava supports transacƟons uƟlising Java’s excepƟon mechanism to handle errors. The code that
commits a transacƟon is placed in a try catch block. A transacƟon will abort if an excepƟon is not
caught and the system will roll back to the state at the beginning of the main method. Otherwise
the transacƟon will implicitly commit at the end of the method. All structures reachable from a per-
sistent root will be promoted together with any referenced objects that they include. TransacƟons
that do not amend any persistent structures behave as read only. A checkpoint mechanismmaintains
global recovery points. The system will transparently fetch from disk any objects needed to process
a transacƟon without any modiĮcaƟon to user deĮned classes.

Java’s strong type checking is preserved by storing objects’ class informaƟon in the stable store.
When a persistent object is retrieved, a cast is made in order to assign the stored object to a new
instance. Then the type informaƟon reŇected by the cast is checked againt the class informaƟon
stored with the object.

2.1.5.3 Persistent stores

The moƟvaƟon behind many persistent stores is to accompany persistent programming systems.
Cricket [SZ90], and ÖÊÃÝ [CAC+84] are two such instances. A recent trend in persistent stores is
to store data persistently by default. Java cards [ST06] belongs in this category. Cricket, ÖÊÃÝ, and
Java cards are object-based stores. Java cards is implemented for Ňash memory [BCMV03]. In all
three cases objects can have any longevity required by deĮniƟon and their treatment is uniform ir-
respecƟve of their type. To achieve orthogonal persistence, Cricket employs memory mapping while
ÖÊÃÝ employs soŌware address translaƟon. Objects in Java cards are by default persistent because
they are stored and updated in persistent memory. For access control, Cricket uses capabiliƟes while
ÖÊÃÝ uses passwords. Access control in Java cards is not reported. For protecƟon against data type
violaƟons, ÖÊÃÝ stores type informaƟon with the objects.

Java cards is a persistent, transacƟonal, garbage-collected memory management system for im-
plementaƟons based on Ňash technology. In this environment objects are persistent by default.
Memory consists of a small Ù�Ã module of 8»� size and a Ňash module of 1Ã�. The Flash memory
used is of type ÄÊÙ that is memory mapped.
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Objects are created in the persistent memory, so they are persistent by default. The ��½ includes
the createNewObject �Ö® funcƟon. The data manipulaƟon language (�Ã½) consists of the GetField
and PutField �Ö® funcƟons. Java cards supports persistent arrays with similar ��½ and �Ã½ state-
ments. Access to objects in Ňash memory can happen either via physical pointers and the memory
mapping interface or via references using the �Ö® methods. References are unique idenƟĮers of ob-
jects generated at creaƟon Ɵme. A search tree maps references to Ňash addresses. Unreachable
objects are garbage-collected and their space is reclaimed.

TransacƟons are supported by maintaining a commit buīer that acts as an undo/redo log for
rolling back transacƟons. Java cards supports three atomicity models. The Įrst model oīers atomic
access to objects, which should be serialised. The second provides explicitly stated transacƟons that
can wrap a group of statements. Finally, copying a region of an array can be performed atomically.
Java cards stores modiĮed values in new locaƟons, hence both old and new values coexist in Ňash
memory.

The system oīers block level granularity of operaƟons in comparison to commercial ��ÖÙÊÃ im-
plementaƟons, which read, write, and erase at byte level. As a result, Ňash outperforms the ��ÖÙÊÃ
alternaƟve. However, Ňash performance degrades as memory is Įlled up with data because space
reclamaƟon only obtains part of the deallocated space.

The Cricket persistent store is built on top of the Mach memory management unit and uƟlises
memory mapping, external pagers speciĮcally, to provide a shared, transacƟonal, directly accessible
single-level store. To support transacƟons, Cricket uƟlises the transacƟon mechanism of the �øÊ�çÝ
storage manager [CDRS86].

Cricket provides uniform representaƟon and treatment for persistent and transient data of any
type. This approach results in applicaƟon code simplicity and development Ɵme reducƟon, which is
the moƟvaƟon behind Cricket. Performance tests verify the beneĮts incurred for speciĮc applicaƟon
systems, such as design environments and mulƟ-media oĸce systems, where response Ɵme is the
challenge rather than system throughput.

Cricket embraces a client-server architecture, supports distributed applicaƟons, and provides
mulƟthreading for true parallelism with mulƟprocessors. ApplicaƟons in Cricket execute in separate
protecƟon domains and communicate via an ÙÖ� interface. Access control is implemented by means
of capabiliƟes.

The Persistent Object Management System (ÖÊÃÝ) supports the PS-Algol persistent programming
language. In ÖÊÃÝ object persistence is orthogonal to the data’s longevity and the type of store, such
as Ù�Ã and disk.

ÖÊÃÝ supports incremental loading and storing of objects. It uƟlises two separate heaps, one for
mainmemory and one for disk, and two types of addresses. Concerning data transfers, objects reach-
able from a persistent root are loaded into main memory on demand and their persistent address is
swizzled to the local address where they reside.

ÖÊÃÝ supports type checking and access control. Type checking in ÖÊÃÝ leverages class deĮniƟons
that are stored within object code and databases. Objects on the heap contain adequate informaƟon
for idenƟfying their type descripƟon. For access control to data, programs are obliged to provide the
correct password. Passwords in ÖÊÃÝ can contain up to 16 characters.

ÖÊÃÝ uses shadow paging to support transacƟons and recovery. Two versions of directories of
databases are maintained in conƟguous disk blocks. In this way the data resident on disk before a
transacƟon will not be overwriƩen by the updated data commiƩed within the transacƟon. In case of
a fault the consistent version of data prior to the transacƟon is used to restore state.

2.1.6 Persistent systems performing distributed processing

Distributed persistent systems combine the uniĮed management of the interconnected compuƟng
resources with lower programming eīort for data management to boost user collaboraƟon and per-
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formance. Table 2.2 presents how each system implements persistence, supports data management,
provides stability and resilience, and oīers protecƟon.

2.1.6.1 Persistent operaƟng systems

A distributed operaƟng system oīers integrated management of the connected computers as a unity.
A persistent one, such as Clouds [DLAR91], oīers also transparent management of the hierarchy of
memory.

The Clouds distributed, general purpose operaƟng system consists of three levels, the minimal
kernel, system objects, and higher level objects. The Clouds architecture consists of compute servers
and data servers. The former carry out processing whereas the laƩer store objects and supply them
to the compute servers. Clouds supports the programming languages ��++ and ��iīel, which are
distributed versions of �++ and Eiīel respecƟvely.

Clouds is composed of persistent virtual address spaces, called objects, at the operaƟng system
level. Objects enclose code and data. They are shared and available to be invoked by clients. Memory
in Clouds is shared and distributed and is represented by a two dimensional address space. A variety
of memory constructs oīer powerful assistance in programming. Per-object memory, per-invocaƟon
memory, and per-thread memory provide memory with diīerent scope and sharing aƩributes. The
Įrst is globally sharable, the second is visible within an object, and the third is visible within an object
for a parƟcular thread.

Each object contains user code, permanent data, a volaƟle heap for transient data, and a per-
sistent heap where permanent data reside. As encapsulaƟon dictates, data can only be accessed
inside an object. Objects survive system crashes since objects are by default persistent unƟl explic-
itly deleted. Objects abstract storage and threads and are used to implement computaƟons. Clouds
employs a single-level store using mapped Įles.

Processing in Clouds is driven by threads. Threads traverse objects and execute the code within
them. Thus, threads enter diīerent address spaces. When more than one thread execute code in an
object address space, semaphores or locks guarantee concurrency control. Distributed programming
is eĸcient in Clouds, since the computaƟons of centralised algorithms can run in a distributed fashion.
Threads execute concurrently on mulƟple compute servers where they access data in parallel.

Clouds supports transacƟons and guarantees atomicity by use of locking and recovery. Resilience
is achieved by replicaƟon of objects and threads in diīerent nodes. If the iniƟal thread aborts, one of
the replicated ones that managed to commit is selected.

2.1.6.2 Persistent programming systems

Many persistent programming systems for distributed environments facilitate sharing and collabo-
raƟon by oīering a general language or mulƟ-lingual support for managing the stored data across
programming languages. Napier88 [Mun93] and Ý«ÊÙ� [CDF+94] have this ability. In terms of per-
sistence implementaƟon, both Napier88 and Ý«ÊÙ� use a soŌware address translaƟon technique be-
tween a local cache and a persistent store. Napier88 deĮnes a simple �Ö® for creaƟng, updaƟng,
and deleƟng objects, while Ý«ÊÙ� features a generic language similar to Ê�½. Napier88 achieves re-
silience through shadow paging, while Ý«ÊÙ� records at server-side the work of a client using its log
records. For protecƟon, local servers in Ý«ÊÙ� have an access control component that check object
namespaces. Napier88 supports protecƟon of a page range with none, read, write, or execute access
control privileges.

A number of diīerent models of concurrency and distribuƟon [Mun93] have been incorporated
into theNapier88persistent transacƟonal programming system,which is backed by a persistent object
store. It is strongly-typed featuring a sophisƟcated type system and supports Įrst-class procedures
and environments. Napier88 has a layered architecture with no predeĮned view of the concepts
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of distribuƟon, transacƟons, and concurrency. In this way it allows cost-eīecƟve development of
arbitrary models of these concepts.

The object store is hidden from the programming environment. An abstracƟon layer with a heap-
based architecture stands in the middle. It features a local heap for creaƟng new objects and caching
persistent ones and a stable heap where presistent objects are stored. The stable heap is a view to
the object store. It deĮnes an object format that is agnosƟc to programming languages. TransiƟons
from the one heap to the other happen via swizzling, a soŌware address translaƟon technique.

The �Ö® to the stable heap includes funcƟons for accessing the persistent object store, that is,
funcƟons to create and delete objects, to update the store in a new consistent state, and to call the
garbage collector.

Napier88 provides stability through transacƟons, resilience with shadow paging, and protecƟon
through access control of page ranges. Four access modes are supported: none, read, write, and
execute.

The Ý«ÊÙ� persistent object system supports heterogeneous distributed processing. It features
the Ý«ÊÙ� DeĮniƟon Language (Ý�½) to establish a language-generic notaƟon so that applicaƟonswrit-
ten in diīerent programming languages can interact and share resources. The Ý�½ is similar to the
object deĮniƟon language (Ê�½) proposed by the object database management group (Ê�Ã¦).

Ý�½ communicates with object-oriented languages, such as �++, through bindings. ApplicaƟon
class deĮniƟons are wriƩen in Ý�½ and generate type objects accordingly. Then, language-speciĮc
tools generate class declaraƟons and special funcƟondeĮniƟons from the type objects. The generated
code is placed in Įles read by the applicaƟon programming language along with the Ê®� of the type
object.

Ý«ÊÙ� oīers a number of services. Locking is used to provide concurrency control, transacƟons
safeguard the system’s stability, and recovery is achieved with the use of logs. Queries over objects
and object clustering add to this list. Regarding transacƟons, applicaƟons transmit a commit request
to the local server to make changes permanent. A two-phase commit protocol secures transacƟons
that enable more than one servers. The system extends the �Ù®�Ý algorithm [MHL+92] to support
recovery and rollback. It involves redoing a client’s progress at the server side using the client’s log
records.

Ý«ÊÙ� adheres to a symmetric peer-to-peer server architecture. The system executes as a group
of communicaƟng processes via an ÙÖ� protocol. Each process, a Ý«ÊÙ� server, implements page
cache management, an object service, concurrency, and recovery. ApplicaƟons may access data in a
uniform fashion whether they reside at the machine or at another server. Ý«ÊÙ� retains compaƟbility
with Unix systems by providing object-based access over the Įle system.

ApplicaƟon calls to unswizzled objects invoke the object cache manager, which in turn requests
the object from the local server via ÙÖ�, if it is not found in the cache. The local server searches the
object at its disk and redirects the request to a remote server if it can not Įnd the object either. The
local server is responsible for managing lock and commit requests regarding the data resident at its
disk. The access control component of each local servermaintains object namespaces to enforce data
protecƟon.

2.1.6.3 Persistent stores

OnemoƟvaƟon for persistent stores that support distributed environments is to oīer a programming
language agnosƟc interface to the data. The simpliĮed data management that programmers in a dis-
tributed team are required to apply with a persistent system results in eĸcient collaboraƟon and
increased producƟvity. The most popular persistent stores are object-based. Objectstore [LLOW91]
and ÝÖÊÃÝ [MDRK93] are two typical examples of this class. The persistencemodel of Objectstore and
ÝÖÊÃÝ is based onmemorymapping. Both stores provide transparent persistence, but they diīer sig-
niĮcantly with regards to the level of coupling with applicaƟon programming languages; Objectstore
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is strongly coupled with �++ while ÝÖÊÃÝ is language independent. Objectstore’s ��½ includes a stor-
age class keyword called persistent and a pointer to a database where a speciĮc object should be
stored. These two elements are part of a persistent object’s declaraƟon. ÝÖÊÃÝ reveals no speciĮc
details regarding its �Ö® to the persistent store. ProtecƟon in Objectstore relies on �++’s type check-
ing, which is applied to database objects in addiƟon to transient ones, and on the operaƟng system’s
virtual memory system that controls access to individual pages. Finally, ÝÖÊÃÝ dispatches capabiliƟes
for newly created objects to the applicaƟons that requested them and applicaƟons use the provided
capabiliƟes to request objects.

TheObjectstore object-oriented��ÃÝ supports orthogonal persistence through amemory-mapped
architecture and a storage class at the programming level. Objectstore is used mainly by �++ applica-
Ɵons due to the language’s popularity. Key to the Ɵght integraƟon of Objectstore with �++ is orthog-
onal persistence, i.e. that persistence is independent of an object’s type and longevity. Objectstore’s
architecture results in high performance and code reusability since data handling happens by the
same machine code sequences irrespecƟve of the data’s longevity. Objectstore extends �++ with an
idenƟĮer called persistent, which speciĮes a storage class, to denote that a declared object should
persist in the database. A pointer to the database is also provided as an argument in the object’s
declaraƟon statement. A persistent object’s manipulaƟon in the program is the same as a transient
one’s.

ProtecƟon in Objectstore is based on access control to virtual memory pages and �++’s type sys-
tem. Objectstore relies on the �Öç’s virtual memory hardware and the operaƟng system’s virtual
memory system to control access to pages, which can be set to none, read, or write. Objectstore
extends �++’s type checking to database objects. Thus, applicaƟons use a single type system that also
takes into account persistent objects.

An Objectstore server is responsible for persistent storage, transacƟon processing, concurrency
control, recovery and back-up. It provides two-phase locking at page granularity and uƟlises a write
ahead log to support recovery. When a transacƟon commits, the updated pages are transferred to
the server and stored to disk. The server signals an acknowledgement and the pages exit the address
space but not the client cache in order to avoid requesƟng a page in case it is reused in a transacƟon.
A two-phase commit protocol takes care of transacƟons that involve more than one servers.

The client cache is a core feature of distributed processing. It contains recently accessed database
pages and resides in the client’s virtual memory. When an applicaƟon Įles a request for a page, the
client cache is searched Įrst. If the page is there, it is mapped into the client’s virtual address space.
Otherwise, the server places the page into the client’s cache. Cache coherence is achieved by keeping
track of pages in clients and assuring that they all share the same mode, either shared or exclusive.
Objectstore uƟlises the machine’s hardware, virtual memory addresses, and the operaƟng system
page-in mechanism to provide transparent, fast data transfers from disk to main memory.

Queries in Objectstore are strongly coupled with �++. Queries operate on object collecƟons and
result in other collecƟons or an object reference. In addiƟon to iteraƟng and checking, Objectstore
uƟlises indexes and a query opƟmiser. Indexes are more complex than relaƟonal indexes because
they might traverse objects or even collecƟons. Objectstore supports associaƟve queries and object
relaƟonships through an explicit relaƟonship facility.

ÝÖÊÃÝ is a distributed, language independent, run-Ɵme system for persistent storage. The system
uƟlises memory mapping together with Mach’s External Memory Management Interface to provide
persistence, sharing, and automated fetching of objects on demand.

The system provides transparent persistence and sharing of objects. The persistence model sup-
ports the uniform manipulaƟon of objects at the programming language level, irrespecƟve of an ob-
ject’s presence in memory. Objects are stored in naƟve format; no conversion is required between
storage formats. Objects stored in ÝÖÊÃÝ are concurrently sharable between distributed applicaƟons.
Sharing happens at real Ɵme, thus changes are immediately visible to all clients. This type of sharing
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is Įner opposed to the load-store programming rouƟne.
The core concept in the ÝÖÊÃÝ’s storage system is a compiled class, which is a storage unit and

language independent template. CreaƟng a compiled class requires processing of object deĮniƟons
and implementaƟons. Any object can be persisted with ÝÖÊÃÝ as long as a compiled class for the
object is registered with the system. The run-Ɵme system retrieves object informaƟon and maps the
object to processes’ virtual address space.

CapabiliƟes are distributed to users when an object or a compiled class is created. A capability is
passed as a token to retrieve an object from ÝÖÊÃÝ. The system uses the passed capability to Įnd the
locaƟon of the object and control access to it. This way objects are traced at run-Ɵme and replicated
objects are transparently supported.

2.1.7 Performance OpƟmisaƟons

Architectural support for orthogonal persistence emphasises a number of aspects including the man-
agement of the memory hierarchy, the eĸcient data communicaƟon to disk using a single represen-
taƟon, and eĸcient access to disk. These key aspects invite opƟmisaƟons that can have a signiĮcant
impact on the system’s performance. A hierarchical memory model of computaƟon [ACFS94] that
models a processor’s acƟvity with respect to the levels of the memory hierarchy is in line with the
raƟonale of an orthogonally persistent system. How the transparent movement of data between
the main memory and secondary storage is implemented is another key performance issue. Two
techniques are quanƟtavely invesƟgated: pointer swizzling [Mos92] implementaƟons and memory
mapping where a performance study with tradiƟonal ®Ê rouƟnes is presented [RPV09]. Finally, an
approach that minimises disk accesses for retrieving objects is described [IJC01].

The Uniform Memory Hierarchy (çÃ«) model [ACFS94] is a hierarchical memory model of com-
putaƟon that studies performance issues of the memory hierarchy with respect to the acƟvity of the
processor during program execuƟon. The model is parameterised by three aspects:

• the rate of increase in block size as we move farther from the processor,

• the raƟo between the number of blocks and block size, and

• the cost of data movement between the memory modules of the hierarchy.

The Įrst two parameters of the çÃ« model of computaƟon are constants. The third parameter
is a cost funcƟon. The cornerstone of çÃ« is the concept of communicaƟon eĸciency, which disƟn-
guishes the computaƟonal tasks from the communicaƟonal tasks, which are related to data move-
ments between the memory modules. A program’s communicaƟon eĸciency is measured by the
raƟo of processor acƟvity during the program’s execuƟon, i.e. user and system Ɵme, to the program’s
total running Ɵme, that is real or elapsed Ɵme. In çÃ« all buses can be acƟve at the same Ɵme to
allow pipelining of operaƟons. The paper [ACFS94] presents a generalised version of the model that
incorporates parallelism.

The way programs perform read and write operaƟons in a database or persistent object store can
make a great diīerence in performance. Persistent objects can contain references to other objects
that are resident in the same database or store. The references are called unique object idenƟĮers or
oids. The possible proĮts incurred by converƟng oid references between objects resident in persistent
memory into direct pointers for fastermanipulaƟon is examined in [Mos92]. This conversion is known
as pointer swizzling. Pointer swizzling aƩempts to amorƟse up-front conversion cost by saving a liƩle
each Ɵme a reference is traversed. Pointer swizzling is a soŌware address translaƟon technique that
is useful for the uniform treatment of data.

The same paper invesƟgates Įve swizzling approaches namely, eager in-place swizzling, lazy in-
place swizzling, eager copy swizzling, lazy copy swizzling, and non-swizzling. Eager and lazy swizzling
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Table 2.3: Query languages and interfaces for querying OO data: table with columns signifying data
locaƟon and rows signifying the soŌware data model (objects or relaƟons) against which queries are
executed.

Data model Programming language in-
memory data structures

Orthogonal persistence across
main and secondary storage

Secondary storage

Objects Pi�Ê Ø½, ÖØ½ [RIS+10],
½®ÄØ-to-Objects [MBB06],
���½ [RSI12], ¹Ø½ [WPN06],
Ý�ã½ [SDSD86], ÊØ½ [CB00]

ÊÖ�½ [MSOP86], Object-
Store [LLOW91], Ê++ [AG89]

øÝØ½ [KKS92],
MemÝØ½ [Mem13],
Daytona [Gre99],
¹ÖØ½ [KS09]

RelaƟons RelC [HAF+11] ScalaØ½ [SZ10], ½®ÄØ-
to-ÝØ½ [MBB06]

means prefetching and on demand respecƟvely. In place swizzling happens in place in the object
manager’s buīers while copy swizzling creates a separate in-memory copy. The performance study’s
results show that pointer swizzling is 30% more expensive than non-swizzling if pointers are visited
only once. The cost of swizzling is amorƟsed between a few and a few tens of visits. In addiƟon, the
cost increases with the number of objects and object size. Consequently, the appropriate method to
use depends on the size and shape of an applicaƟon’s objects, the frequency of traversals, and the
way the applicaƟonworkswith its objects. Given adequatememory copy swizzling provides Ňexibility,
which is oŌen an important aspect.

Algorithms for the eĸcient management of persistent storage, which minimise disk accesses and
provide full recovery from failures can provide performance beneĮts for persistent systems [IJC01].
TradiƟonal methods of storing data in Įle systems and databases generate signiĮcant overhead and
are parƟcularly ineĸcient in case of frequent operaƟons on a large number of objects. The algorithms
can be implemented to allocate storage on a raw disk or to allocate blocks that are stored in a single
random access Įle. The former approach provides opƟmal performance, but is less portable than
the laƩer. The algorithms can be used with three diīerent memory management methods. The Įrst
makes use of in-memory free lists for fast disk block allocaƟon and deallocaƟon, the secondmaintains
lists on disk, which contain both free and allocated blocks, e.g. for segregaƟng blocks by size, and the
third maintains only free lists on disk. An algorithm that minimises searches, splits, and coalesces is
described. It can be combined with any of the above memory management methods.

A performance study between memory mapped Įles and tradiƟonal I/O techniques on applica-
Ɵons that perform intensive data manipulaƟon suggests memory mapping is more eĸcient [RPV09].
For the I/O techniques the fread funcƟon is used.

Memory mapped Įles allow a whole Įle to be mapped to a process’s virtual address space. On
demand of a byte from the Įle, the whole block of data containing the byte is copied directly to the
respecƟve process address space. On the other hand, tradiƟonal I/O incurs a system call in order to
open the Įle, remove a disk block from the cache, copy the block on demand to the buīer cache, and
Įnally copy it from the buīer to the process’s address space.

The experiments involve the execuƟon of data mining algorithms on a dual boot machine with
Linux and Windows installed. The study reports beƩer results for the memory mapping alternaƟve
under both operaƟng systems independently of the number of dimensions, samples, and clusters of
the algorithms.

2.2 Programming language query support

Our work involves the design and implementaƟon of an external ÝØ½ relaƟonal interface to query pro-
gram data structures. To do that, we combine a relaƟonal representaƟon of objects and a synthesis of
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object and relaƟonal query evaluaƟon techniques. Our work is related to query languages and inter-
acƟve interfaces for ÊÊ data (SecƟon 2.2.1) relaƟonal representaƟons for objects (SecƟon 2.2.2), and
queries against the non-Įrst normal form (Ä1Ä¥) relaƟonal data model (SecƟon 2.2.3). The presented
art aƩacks the object-relaƟonal impedance mismatch problem [Mai90], from diverse perspecƟves.
Table 2.3 presents a categorizaƟon of query languages according to the soŌware data model they
support and the data locaƟon where query execuƟon takes place.

2.2.1 Query languages and interacƟve interfaces for object-oriented data

Object-oriented ��ÃÝ and manipulaƟon languages provide persistence, transacƟons, and querying
naƟve to the object model for applicaƟons wriƩen in ÊÊ programming languages. We focus on the
expressiveness of database query languages for objects and the techniques uƟlized in query evalua-
Ɵon for graph-based data structures. Another line of work related to querying objects regards oīering
a declaraƟve interface for performing programming tasks over collecƟons of items, also called query
comprehensions.

Providing an external interface for querying program data is tough for two reasons. First, general
purpose programming languages typically do not provide an interpreter to evaluate a query at runƟme
in a safe manner. Second, such queries require synchronized access to data. For these reasons and
because the provision of safe interacƟve queries is one of Öi�Ê Ø½’s contribuƟons we also present
here the state of the art for ad-hoc queries to program data. Besides the programming language, ad-
hoc queries to main memory data are also oīered by main memory ��ÃÝ with the expense of extra
dependencies and overhead for storing the data. Our review includes this line of work too.

2.2.1.1 Database query languages for object-oriented data

In the past decades research in database query languages for object-oriented data has produced sig-
niĮcant results. ÊÖ�½ [MSOP86], ObjectStore [LLOW91, OHMS92], Ê++ [AG89], and øÝØ½ [KKS92]
are representaƟve examples of this line of work. We note two diīerences between our work and
database query languages presented in this secƟon. First, Öi�Ê Ø½ employs a relaƟonal representa-
Ɵon of program objects in 1Ä¥ and an interacƟve interface for execuƟng ÝØ½ queries on them. This
model is unique among the related work. Second, our work uƟlizes query opƟmizaƟons oīered by
the relaƟonal query processor and leverages programming language algorithm implementaƟons for
speciĮc container classes to boost query processing performance. On the other hand, the presented
database query languages implement arbitrary indices. An appropriate implementaƟon to support
such indices in Öi�Ê Ø½ is a future work plan.

ÊÖ�½ is an object-oriented database language. It is computaƟonally complete and features auxil-
iary storage structures, indices, for associaƟve access to object collecƟons in the system. The language
evaluates, in a sequenƟal manner or using an index, a condiƟonal expression speciĮed through path
expressions against an object collecƟon and returns the objects that saƟsfy it.

ObjectStore is another system providing persistence orthogonal to object types and to queries
against objects. It provides referenƟal integrity for has-one, has-many, and many-to-many relaƟon-
ships between objects by placing pairs of inverse pointers within them. ObjectStore queries are ex-
pressions evaluated on one or more object collecƟons; they return a collecƟon, an object reference,
or a boolean. Expressions include �++ expressions and selecƟon predicates. Nested applicaƟon of
expressions is allowed to compose complex queries operaƟng on embedded collecƟons. Joins be-
tween collecƟons on arbitrary aƩributes are supported without opƟmizaƟons. ObjectStore provides
associaƟve queries, that is indices to opƟmize evaluaƟon of expressions against indexed aƩributes.
Indexed aƩributes can be deeply nested within objects. Indices are the main vehicle for applying
opƟmizaƟons in query processing. Both strategy selecƟon and query evaluaƟon depend on their
presence.
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Ê++ extends �++ with faciliƟes for iteraƟng through sets of objects in a declaraƟve manner and
orthogonal persistence with respect to object types. An iterator can be followed by a sequence of
expressions, which are executed on each object of the set. Expressions include set selecƟon, ordering,
and recursion. Ê++ tracks type extents in collecƟons and provides queries to either the extents or the
hierarchies that derive from them. Iterators of diīerent sets can be combined to form arbitrary joins.

øÝØ½ is an ÝØ½-like language for querying object-oriented databases. The language is based on
F-logic [KL89], a logic with higher-order syntax but Įrst-order semanƟcs. øÝØ½ features extended path
expressions with variables ranging over classes, aƩributes, and methods and with selectors that re-
trieve data or schema. It provides explicit and implicit joins, nested subqueries, schema queries over
inheritance hierarchies, set operaƟons, and an equivalent of a ¦ÙÊçÖ �ù clause. Queries return tuples
or object ids aŌer creaƟng the objects.

2.2.1.2 Query comprehensions to programming language collecƟons

Numerous approaches provide a declaraƟve interface for transforming collecƟons. L®ÄØ toObjects [MBB06]
is a branch of the polymorphic ½®ÄØ paradigm for object collecƟons. L®ÄØ is based onmonads, a gener-
alizaƟon of list comprehensions and, thus, implements the map, filter, bind, and fold higher order
funcƟons. ÖØ½ [RIS+10] is a purely-declaraƟve logic sublanguage for querying collecƟons, that is set,
array, and map, in Java. It oīers transparent parallelism. ���½ [RSI12] is also a logic-based declara-
Ɵve language but for expressing heap asserƟons at garbage collecƟon Ɵme in Java. JØ½ [WPN06] and
Ý�ã½ [SDSD86] build on list comprehensions. JØ½ supports query opƟmizaƟons, namely incremental-
ized caching for mutable collecƟons.

Pi�Ê Ø½ is diīerent from the aforemenƟoned pieces of work in that it creates a relaƟonal repre-
sentaƟon for program data structures and provides an ÝØ½ interface for querying them rather than
oīer declaraƟve queries in the exisƟng programming language object model. In addiƟon, Öi�Ê Ø½’s
interface is interacƟve.

2.2.1.3 Ad-hoc queries to main memory D(B)MSs

Main memory databases [GMS92] leverage the memory’s random access model to provide a per-
formant service especially for hot data that is frequently accessed and has Ɵght response Ɵme re-
quirements. Main memory query processing leverages compact data structures, such as T-trees, in
order to speed up queries. It also employs pointers for the cross-referencing of data, including object
associaƟons and foreign keys to relaƟonal table tuples [LC86]. In these cases pointers drive the use
of pre-computed joins where, for example, a foreign key is subsƟtuted with the tuple(s) it points to.
MemÝØ½ [Mem13] and Daytona [Gre99] are main memory object oriented database systems. Con-
trary to �(�)ÃÝs, which store programdata in own containers, Öi�ÊØ½ queries programdata structures
in place. A ��ÃÝ introduces unnecessary dependencies and overheads to an applicaƟon that only re-
quires in-memory data querying capabiliƟes.

MemÝØ½ supports ÝØ½ queries through an external query interface. MemÝØ½ uses lock-free data
structures in memory, translates ÝØ½ queries to �++ code for eĸciency, swaps data to disk aŌer a
transacƟon succeeds, and behaves exactly like MyÝØ½, with which it is wire-compaƟble.

AãΙã’s Daytona data management system with its high level fourth generaƟon query language
Cymbal also Įts in this category. Cymbal is a powerful mulƟ-paradigm language that includes �ÄÝ®
89 ÝØ½ as a subset. Daytona is based on a code-generaƟon architecture, like Öi�Ê Ø½. Ad-hoc queries
in Cymbal translate into � programs complete with a makeĮle, compile, and execute against data
stored in standard çÄ®ø Įlesystems. Cymbal provides containers opƟmized for in-memory computa-
Ɵon, which can also support applicaƟons required to operate in main memory at all Ɵmes.
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2.2.1.4 Ad-hoc queries to object collecƟons

Some query languages for in-memory object collecƟons support ad-hoc queries. JØ½ [WPN06] and
ÊØ½/�++ [CB00] provide limited support for interacƟve queries. L®ÄØpad1 provides an interacƟve
interface to ½®ÄØ, including ½®ÄØ to Objects, for .Ä�ã languages. A debugger [LHS03] that supports
dynamic queries on an object’s state and relaƟonships is available in Java. Contrary to these query
interfaces, which adopt the programming language object model, Öi�Ê Ø½ provides a relaƟonal inter-
face to the program’s data structures. In addiƟon, while ¹Ø½ and ÊØ½/�++ have been developed for use
within a general purpose, typically staƟc, programming language, Öi�Ê Ø½ has been speciĮcally devel-
oped to support interacƟve queries. In contrast to ½®ÄØpad, which supports .Ä�ã languages, Öi�Ê Ø½
supports �/�++ applicaƟons.

JØ½ supports dynamic queries against objects in Java containers. The query evaluator can accept
an abstract syntax tree at run Ɵme and execute the query with the cost of runƟme type checking.
Although Ňexible queries can be constructed from user input, there is always the cost of programming
the conversion of an untyped query expression to a typed one.

OØ½/�++ supports queries against �++ Ýã½ containers. Because queries take the form of untyped
strings, they can be input from an external interface. Query input parameter types, however, are
checked at runƟme and type violaƟons trigger an error excepƟon. Each query’s result is speciĮed as
a parameter to the funcƟon that executes it. An error excepƟon is generated if the actual result type
diīers from the speciĮed one.

L®ÄØpad uses the .Ä�ã Reflection.Emit funcƟonality to build data contexts on the Ňy and .Ä�ã’s
code generator and code compiler to compile and execute ½®ÄØ queries at runƟme.

Query-based debuggingwith an appropariate tool is available in Java. The debugger demonstrates
capabiliƟes for dynamic and on-the-Ňy queries in Java using load-Ɵme code instrumentaƟon. A cus-
tom class loader generates and compiles custom debugger code. Queries expose object state and
object relaƟonships. The debugger has the ability to gather plain staƟsƟcal data but does not support
sophisƟcated operaƟons such as aggregaƟons, nested queries, and views oīered by general purpose
query faciliƟes.

2.2.2 RelaƟonal representaƟons for objects

Fundamental issues in creaƟng a relaƟonal representaƟon for objects concern the mapping of pro-
gramming language classes, associaƟons (has-a, many-to-many), inheritance (is-a), and polymor-
phism to relaƟonal constructs. Persistent data management of object-oriented applicaƟons using
a relaƟonal ��ÃÝ is achieved through a set of object-relaƟonal mapping rules and specialized soŌ-
ware systems that implement those rules bidirecƟonally. Two popular such systems are Hibernate
for Java [BK06] and MicrosoŌ’s ��Ê .Ä�ã EnƟty Framework for .Ä�ã [MAB07]. Considerable eīort has
been put forward to support associaƟons as Įrst class programming language constructs [AGO91,
BW05, Rum87]. Hawkins et al. [HAF+11] propose relaƟons as classes that implement a high-level
relaƟonal speciĮcaƟon. Below we elaborate on these relaƟonal representaƟons.

2.2.2.1 Object-relaƟonal mapping

Object-relaƟonal mapping [KJA93] studies the principles for transforming object-oriented data struc-
tures to relaƟonal ones stored in a relaƟonal ��ÃÝ in order to solve the object-relaƟonal impedance
mismatch problem. Under most approaches in this area classes become relaƟonal tables and non-
scalar values within classes, i.e. associaƟons, give their place to relaƟonship instances, i.e. primary
key–foreign key chains between relaƟonal tables. Many-to-many associaƟons require an intermedi-
ate table for tracking the associaƟon instances between the two tables.

1http://www.linqpad.net/

http://www.linqpad.net/
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Three approaches have been proposed to implement the following relaƟonal mapping of inheri-
tance and polymorphism.

1. Include the whole class hierarchy in a single table. Thus each column maps to each aƩribute of
the class hierarchy and an extra column idenƟĮes the object type.

2. Each table maps to a class, abstract or concrete, so that the full informaƟon on an object is
obtained by joins on the tables up the hierarchy.

3. Map each concrete class to a table containing all the aƩributes (both own and inherited).

Database operaƟons happen throughqueries embedded in the programming language. JÖØ½ [KS09],
ScalaØ½ [SZ10], and ½®ÄØ to ÝØ½ [MBB06] query database data and store the result set in programming
language containers. JÖØ½ is a plaƞorm independent ÝØ½-like language that executes queries against
Java persistent enƟƟes stored in a relaƟonal database. L®ÄØ to ÝØ½ extends .Ä�ã programming lan-
guages to generate at runƟme an equivalent ÝØ½ query out of a ½®ÄØ query, which is executed against
database tables. ScalaØ½, on the other hand, implements an �Ö® within Scala in the form of a domain-
speciĮc language. Queries in ScalaØ½ are executed against the database tables. Both ½®ÄØ and ScalaØ½
provide staƟcally type checked queries.

Öi�Ê Ø½ does not convert objects to relaƟonal tables; instead, it provides a relaƟonal representa-
Ɵon on top of the programming language object model.

2.2.2.2 RelaƟonships and associaƟons as Įrst class programming language constructs

Object associaƟons as Įrst-class programming language constructs [AGO91, BW05, Rum87] provide
a relaƟonal representaƟon for objects, that is a model naƟve to the programming language for sup-
porƟng object collaboraƟons. The emerging relaƟonal model, groups object collaboraƟon instances
in a relaƟon construct together with associated constraints. A relaƟon is a set of object tuples and
each tuple holds references to the collaboraƟng objects. In eīect, embedded object references that
oŌen account for object collaboraƟons are not required.

Our work does not extend the programming language to support relaƟonal constructs. It pro-
vides a relaƟonal view of the underlying object relaƟonships, that is associaƟons, inheritance, and
polymorphism.

2.2.2.3 RelaƟonal interface to programming language data structures

Two diīerent lines of work provide a relaƟonal interface to programming language data structures:
���½ [RSI12] and RelC [HAF+11].

Object-oriented programming query languages, like ���½ [RSI12]menƟoned earlier, automaƟcally
create a relaƟonal interface from an object-oriented model. The technique is simple; for each prop-
erty B of an object A that is a reference to an object, a relaƟon between A and B is generated in the
form of a funcƟon f : A → B. LisƟng 2.1 depicts an example.

Pi�Ê Ø½ also generates a relaƟonal interface from an object-orientedmodel but Öi�Ê Ø½’s interface
is customizable through a user-provided relaƟonal speciĮcaƟon. In this way, it provides Ňexibility as
to the relaƟonal interface. In addiƟon, Öi�Ê Ø½’s interface is queryable through ÝØ½.

RelC is a language of decomposiƟons that maps a relaƟonal speciĮcaƟon of data structures and a
set of associated funcƟonal dependencies to a concrete data representaƟon for relaƟons. Users can
change data structure choices by changing the high-level relaƟonal speciĮcaƟon, not the code that
uses the relaƟons.

RelC lies close to our work. Both in RelC and Öi�Ê Ø½ users provide a relaƟonal speciĮcaƟon as in-
put for the automaƟc implementaƟon of a relaƟonal interface towards programming language data
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LisƟng 2.1: AutomaƟc relaƟonal interface generaƟon from an object-oriented model
class List {
ListNode Įrst ;
ListNode last ;
int count;

}

class ListNode {
Data d;
ListNode next ;
ListNode prev;
}

class Data {
int x;
int y;

}

List_Įrst ( List , ListNode)
List_last ( List , ListNode)
ListNode_next(ListNode , ListNode)
ListNode_prev(ListNode , ListNode)
ListNode_data(ListNode ,Data)

structures. The main diīerence is that Öi�Ê Ø½’s relaƟonal speciĮcaƟon represents the exisƟng pro-
gramming language model, while RelC uses the speciĮcaƟon to produce a relaƟonal programming
language interface to the speciĮed data structures. Öi�Ê Ø½’s relaƟonal interface supplements the im-
peraƟve programming language interface to provide interacƟve queries against mapped data struc-
tures.

2.2.3 N1NF relaƟonal data model

The Įrst normal form principle of the relaƟonal model [Cod70] is deĮcient for modelling complex ob-
jects. This was the moƟvaƟon for introducing nested relaƟons [RKB85, SS86, TF86]. These provide
an extension to the relaƟonal model where a relaƟon may have relaƟon-valued aƩributes. The ex-
tended data model requires relaƟonal query language extensions for execuƟng recursive queries on
relaƟons.

Researchers have taken a number of approaches to provide queries on nested relaƟons. A popular
one regards restructuring a relaƟon [TF86]. An unnest operator is used to ŇaƩen the relaƟon unƟl the
target aƩributes reach the outmost level. NesƟng, provided by the nest operator, may be necessary to
transformback the result of an operaƟon into the original structure of the relaƟon. Roth et al. [RKB87]
introduce nest and unnest operators to ÝØ½. Their work leverages nested applicaƟon of queries to
avoid relaƟon restructuring. Deshpande et al. [DL87] allow the use of a subrelaƟon constructor within
queries. Users can reference relaƟon-valued aƩributes by creaƟng and naming new relaƟons while
traversing the nested ones. Schek et al. [SS86] provide access to subrelaƟons by using the projecƟon
operator as a navigator. An unnest step in the end exposes the target subrelaƟon. In this approach,
renaming may be required to avoid conŇicts. Colby [Col89] introduces a recursive algebra to provide
access to relaƟon-valued aƩributes nested at arbitrary depth within a relaƟon. The algebra includes
recursive deĮniƟons of the relaƟonal operators; no restructuring of relaƟons or special navigaƟon
operators are required. Google’s Dremel [MGL+10] is a popular system whose query language is
inspired by the aforemenƟoned work. The notable aspect of the query language, which builds on ÝØ½
and is implemented eĸciently for Dremel’s nested columnar model, is the use of path expressions as
input to the relaƟonal operators for navigaƟng within nested records.

The common point between these pieces of work and Öi�Ê Ø½ is that they provide relaƟonal
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queries that execute on a graph-based datamodel of arbitrary depth, that is a nested relaƟonalmodel
on the one hand and a procedural programming or object-oriented model on the other. The diīer-
ence is that the former extend the relaƟonal model and a relaƟonal query language, while Öi�Ê Ø½
maps a procedural code or object-oriented data model into an 1Ä¥ relaƟonal representaƟon and pro-
vides standard ÝØ½ queries through the relaƟonal view against represented programming language
data structures.

2.3 DiagnosƟc tools

Our work is related to relaƟonal interfaces within operaƟng systems (SecƟon 2.3.1), kernel diagnos-
Ɵcs tools that use performance counters (SecƟon 2.3.2) and program instrumentaƟon techniques
(SecƟon 2.3.3), and applicaƟon diagnosƟcs tools (SecƟon 2.3.4).

2.3.1 OperaƟng system relaƟonal interfaces

RelaƟons are part of the structure of some operaƟng systems. The BarrelĮsh operaƟng system fea-
tures a general purpose system knowledge base (Ý»�) used for many core purposes, such as declara-
Ɵvedevice conĮguraƟon [SBRP11] and cache-aware placement of relaƟonal database operators [GSS+13]
among others. The knowledge base runs as a user-level process, collects informaƟon from the kernel
about the various system services, and provides an interface to a constraint logic programming engine
(�½Ö) wriƩen in Prolog. The collected informaƟon forms the input for the �½Ö algorithm and the pro-
duced soluƟon is used to derive kernel data structures for the appropriate system service. BarrelĮsh’s
logic engine is of equivalent expressivity to relaƟonal calculus.

The Pick operaƟng system [Bou86] is built around a mulƟvalued database representaƟon of hash
Įles, which formnested representaƟons. A Įle in Pick is a hash table consisƟng of records, called items
in Pick’s language. Each item consists of Įelds called aƩributes and each aƩribute consists of values.
All Įles and items are organized uniformly. Elements in this hierarchy are variable-lengthed allowing
Pick to form nested representaƟons. The data manipulaƟon language includes access queries with
two commands ½®Ýã, which can express selecƟon using a syntax similar to a ó«�Ù� clause, and ÝÊÙã.
Pick features no data typing and data integrity is leŌ to the applicaƟon programmer.

In contrast to the BarrelĮsh Ý»� and Pick, which use a declaraƟve speciĮcaƟon to derive kernel
data structures, Öi�Ê Ø½ represents exisƟng kernel data structures in relaƟonal terms and provides ÝØ½
queries on them through their relaƟonal representaƟon.

Osquery [The14a] is a new relaƟonal instrumentaƟon and monitoring framework developed by
Facebook. Osquery, like Öi�Ê Ø½, provides an ÝØ½ interface to operaƟng system data leveraging ÝØ½ite’s
virtual table �Ö®. However, osquery is not part of the kernel and conducts analysis based on data ex-
ported by the operaƟng system to user-level programs as opposed to Öi�Ê Ø½, which accesses kernel
data structures. In common with Öi�Ê Ø½, osquery features an interacƟve command-line query con-
sole. In contrast to Öi�Ê Ø½, which targets a single host, osquery features a host monitoring daemon
that schedules queries for execuƟon across an infrastructure. Rocks��, an embeddable key value
store, caches query results to disk.

RelaƟonal-like interfaces exist at the operaƟng system level for carrying out validaƟon tasks. The
work by Gunawi et al. [GRADAD08] contributes a declaraƟve Įle system checker that improves over
e2fsck [MJLF86], mainly because of its high-level abstracƟon. It imports the Įle system’s metadata in
a MyÝØ½ database, carries out Įle system integrity checks by means of ÝØ½ queries, and performs re-
pairs accordingly. Öi�Ê Ø½would alleviate the need for storing the Įle system’smetadata in a database,
but would require loading the metadata in memory. For a disk-based Įle system this would create a
major overhead, but not for a main-memory one. In a potenƟal near future Öi�Ê Ø½ could be a useful
tool for verifying main memory Įle systems that use non-volaƟle Ù�Ã [Oik13].
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Along the same lines, DeTreville [DeT05] proposes a checkable declaraƟve system conĮguraƟon
approach, which removes the need for imperaƟve system conĮguraƟon updates in place. They deĮne
a declaraƟve system model as a funcƟon, which conĮgures a type checked system instance when
applied in system parameters. Instances are automaƟcally checked by policies, which express ad-hoc
rules in a declaraƟve manner. If the qualiƟes of a system instance were part of its in-memory model,
Öi�Ê Ø½ would be able to check its appropriateness by expressing the policies as ÝØ½ queries.

2.3.2 Kernel diagnosƟc tools that use built-in performance counters

Built-in performance counters are available at the hardware level and at the operaƟng system level.
Modern �Öçs export hardwareperformance counters for use by diagnosƟc tools like ChopsƟx [BKFP08]
and ��Ö® [ABD+97]. Counters are accessible from special-purpose registers that record hardware-
related events, such as cachemisses. OperaƟng systems also include performance counters to record
various aspects of system acƟvity, such as process, ®/Ê, virtual memory and network staƟsƟcs. Tools
like top(1), iostat(8), vmstat(8) and netstat(8) use the afore-menƟoned performance counters re-
specƟvely. While performance counters typically track system events, Öi�Ê Ø½ focuses on data struc-
tures state. Öi�Ê Ø½ can obtain read access to operaƟng system performance counters like any other
kernel data structure. The process for represenƟng and accessing the counters is available online. 2

2.3.3 Kernel diagnosƟc tools that use program instrumentaƟon techniques

Program instrumentaƟon techniques augment a system’s code with special-purpose code, typically in
an automated manner, to create system execuƟon metadata. They consist of dynamic or binary code
instrumentaƟon, which replaces or rewrites binary code, and staƟc or source code instrumentaƟon,
which adds instrumenƟng code to source code.

At the data collecƟon phase, tools either consume the input sources or sample them. Sampling-
based tools like ¦Örof [GKM82] employ a sampling funcƟon to decide which events to record. Good
sampling funcƟons achieve near-accurate staƟsƟcal approximaƟon with negligible execuƟon over-
head [BKFP08].

Dynamic or binary code instrumentaƟon is used more widely than staƟc or source code instru-
mentaƟon. Tools like DTrace [CSL04] and SystemTap [PCE+05] perform dynamic or binary code instru-
mentaƟon. In contrast, ½ããng [DD06] performs automated source code instrumentaƟon. ½ããng is a
tracer; it records staƟcally determined events in trace buīers wriƩen to Įles and oīers post-mortem
analysis. Source code instrumentaƟon requires a fresh kernel build for each tracing aƩempt.

Binary code instrumentaƟon tools aremost related to thiswork. DTrace employs a virtualmachine
and a set of kernel modules that manage a probe infrastructure in the Solaris kernel. SpeciĮcally, the
DTrace virtual machine accepts input in the form of the DTrace procedural programming language,
which is reminiscent of C, and injects this code to the kernel’s binary code at runƟme. The injected
code informs the referenced kernel modules to acƟvate the appropriate probes for gathering the data
required to compute the analysis task. Regarding safety, DTrace includes checks for illegal instrucƟons,
division by zero, invalid pointer references and other runƟme errors. Its language is also designed in
a form that prevents the expression of non-terminaƟng code.

SystemTap is a meta-instrumentaƟon tool, which extends and uses the kprobes [Moo01] kernel
debugging infrastructure. It compiles scripts wriƩen in the SystemTap procedural language, which
resembles C, into instrumenƟng loadable kernel modules and leverages the kernel’s dynamic loading
facility for injecƟng it. SystemTap uƟlizes memory reference checks like Dtrace, and checks for inĮnite
loops.

2 https://github.com/mfragkoulis/PiCO_QL/blob/master/src/Linux-kernel-mod/server/pico_ql_dsl.sql#
L415

https://github.com/mfragkoulis/PiCO_QL/blob/master/src/Linux-kernel-mod/server/pico_ql_dsl.sql#L415
https://github.com/mfragkoulis/PiCO_QL/blob/master/src/Linux-kernel-mod/server/pico_ql_dsl.sql#L415
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ÃÝ-WindowsbasedoperaƟng systemsprovide theWindowsManagement InstrumentaƟon (óÃ®) [TC03]
infrastructure, which provides access to management data and operaƟons. Management data are di-
vided in namespaces, which contain classes. Object associaƟons are modelled in associaƟon classes
instead of embedded object references. óÃ® supports a query language, óØ½, which implements a
subset of ÝØ½. A óØ½ query targets a speciĮc óÃ® class hierarchy; joins are not allowed, nor cross-
namespace queries or associaƟons. óØ½ is in fact syntacƟc sugar over the object-oriented óÃ® data
model.

System execuƟon metadata typically capture events, but »½�Ýù [YKC06] provides pointcuts, that
is, predicates, which select matching funcƟon calls and/or data structure Įelds. »½�Ýù is a dynamic
aspect-oriented system, which uses Kerninst [TM99] as a backend. Kerninst is a dynamic instrumen-
taƟon tool, which exports a low-level interface.

Pi�Ê Ø½ consumes directly lower level operaƟng system data, that is, kernel data structures. The
Öi�Ê Ø½ analysis process combines source code instrumentaƟon for generaƟng � funcƟons to imple-
ment the virtual tables and dynamic query evaluaƟon for running an ÝØ½ query through an ÝØ½ in-
terpreter and query evaluator on the kernel’s data structures. In contrast to óØ½, Öi�Ê Ø½ exposes
a relaƟonal model view of the underlying hierarchical data model. This is what makes it queryable
through standard ÝØ½. InstrumenƟng data structure accesses through declaraƟve ÝØ½ queries is a
novel approach.

Öi�Ê Ø½’s data access technique is probe-based but very diīerent than typical probe-based instru-
mentaƟon techniques, like DTrace’s, in three ways. First, as menƟoned, Öi�Ê Ø½ obtains read access to
data structures; it does not instrument events as is the typical case withmost tools such as SystemTap
and DTrace. Second, Öi�Ê Ø½ requires a single access point for each data structure in order to track it.
Event-based tools generate even thousands of probes to achieve instrumentaƟon coverage [CSL04].
Third, Öi�Ê Ø½’s data structure tracking is performed manually at the module’s source code. Its data
access footprint is negligible compared to automaƟc binary instrumentaƟon of event-based tools.
Consequently, Öi�Ê Ø½, like the other tools menƟoned here, incurs zero performance overhead in idle
state, because Öi�Ê Ø½’s “probes” are actually part of the loadable module and not part of the kernel.
When Öi�Ê Ø½ is acƟve, it forces idle threads upon context switches to all of the system’s �Öçs but one
that executes the query. The performance overhead is the processing Ɵme of �Öçs spent in idle state
during query evaluaƟon. Öi�Ê Ø½ employs checks for null and empty data structures when execuƟng
queries, which are type-safe. Joins through pointers are only allowed between compaƟble types.

2.3.4 ApplicaƟon diagnosƟc tools

Related to our work are sophisƟcated soŌware diagnosƟcs tools and scripƟng languages uƟlised for
post-processing of tools’ output. High-level interfaces aƩached to diagnosƟcs tools typically take the
form of browsers [Jos] and proĮlers [HJ91].

Recon [LSZE11] supports debugging of distributed systems through interacƟve ÝØ½-like queries
that target a relaƟonalmodel of systemartefacts. Queries compile into instrumentaƟon code that col-
lects data fromsystemartefacts at applicaƟonexecuƟon replay for answering thequeries. PãØ½ [GOA05]
is a relaƟonal ÝØ½-like query language for program traces with a relaƟonal data model. It compiles
queries to bytecode instrumentaƟon, which is injected to a running Java applicaƟon to achieve on-
line evaluaƟon. In common with Recon and ÖãØ½, Öi�Ê Ø½ features a relaƟonal data model, an ÝØ½
query interface, and online query evaluaƟon. Diīerently to the other two, Öi�Ê Ø½ queries �, �++
applicaƟonmetadata stored in Valgrind data structures as opposed to compiling queries to byte code
instrumentaƟon of Java applicaƟons. Azadmanesh et al. [AH15] deĮne a relaƟonal data model for
program traces and import a Java program trace collected by �½�Ýã, a dynamic analysis tool, into a
relaƟonal database system in order to analyse the collected trace oŋine with ÝØ½. Pi�Ê Ø½ queries
data collected by Valgrind interacƟvely at runƟme and in place without storing them in a database
system. ÖØ½ [MLL05] is another query language for program traces, but is oriented to staƟc analysis
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of Java applicaƟons whereas Öi�Ê Ø½ oīers interacƟve analysis of an applicaƟon’s memory operaƟons
metadata.

The DTrace [CSL04] and SystemTap [PCE+05] diagnosƟc tools are also available for user applica-
Ɵons. ¦�� [SS96], the ¦Äç debugger, can aƩach to arbitrary processes and explore their in memory
data structures with data break points. Compared to the above pieces of work, we idenƟfy two ba-
sic diīerences. First, Öi�Ê Ø½ provides a query interface on a soŌware applicaƟon’s memory space
metadata, not its data structures. Second, Öi�Ê Ø½ combines data structures through a relaƟonal in-
terface rather than merely browse their values. In fact, The combined use of Valgrind’s ¦�� server
with Öi�Ê Ø½ can oīer complementary advantages because it is possible to query data structures at
speciĮc Ɵme instances using ÝØ½. On the other hand, the Öi�Ê Ø½ analysis process combines instru-
mentaƟon of Valgrind’s source code for hooking to Valgrind’s data structures, Öi�Ê Ø½ source code
generaƟon for implemenƟng the virtual table interface by compiling a Öi�Ê Ø½ �Ý½ speciĮcaƟon, and
dynamic query evaluaƟon for running an ÝØ½ query through an ÝØ½ interpreter and query evaluator
on Valgrind tool’s data structures.

Popular high-level interfaces for performance and diagnosƟcs tools include browsers, such as
KCachegrind [Jos] and interacƟve faciliƟes to control proĮling, such as Purify [HJ91]. Purify is a mem-
ory checker and performance proĮler, which features a graphical representaƟon to ease the detecƟon
of performance boƩlenecks. For Cachegrind and Callgrind KCachegrind is available, a browser to nav-
igate call graphs. In addiƟon, Callgrind includes an interface for observing the status of a running
program interacƟvely to retrieve staƟsƟcs or request dumping of proĮle data without stopping the
program.

When the output, either Įnal or intermediate, from a Valgrind tool does not provide a solu-
Ɵon at its current shape then usually scripƟng languages, such as awk [AKW87], Perl [Wal00], and
Python [Lut03] come into play. AlternaƟvely, the output can be inserted into a relaƟonal ��ÃÝ to
capitalise on its ÝØ½ interface. In fact, Memcheck can output errors in øÃ½ format, which makes it
easy to combine with a relaƟonal ��ÃÝ. At the intersecƟon of scripƟng languages and database sys-
tems, Perl’s ���::�Ýò driver [Thea] allows execuƟng ÝØ½ queries on �Ýò Įles. Cachegrind’s output
matches this format. Pi�Ê Ø½ oīers live interacƟve ÝØ½ queries to evolving metadata. In this way it
obviates post-processing and shortens the write query-analyse results cycle signiĮcantly. Finally, with
Memcheck we are parƟcularly interested in leveraging internal metadata, such as shadow memory
and memory allocaƟon blocks, which are not output.



Chapter 3

Query interface design

Our contribuƟon to the state of the art is the design and implementaƟon of an interacƟve relaƟonal
interface to a program’s main-memory data structures that eliminates the overhead of storing the
data in a ��ÃÝ, yet provides a typical relaƟonal database query engine’s faciliƟes, namely standard
ÝØ½ views, queries, and opƟmizaƟons. Our method maps imperaƟve programming data structures
into a relaƟonal interface. Object-oriented data models can use numerous sophisƟcated features;
providing a relaƟonal representaƟon of them can be diĸcult. This chapter describes how we map
procedural programming and restricted ÊÊ data models to a relaƟonal interface. Models that don’t
use ÊÊ features are easier to represent in relaƟonal terms. For brevity, when we refer to objects or
object-oriented programming or object-oriented datamodelwe also include procedural programming
and its constructs, such as � structs.

Our method for exposing an object-oriented data model through a relaƟonal interface addresses
two challenges: Įrst how to provide a relaƟonal representaƟon of objects; second how to evaluate
ÝØ½ queries against objects through their relaƟonal representaƟon. The key points of the design that
address these challenges include

• rules for creaƟng a relaƟonal representaƟon out of objects (SecƟon 3.1),

• a �Ý½ for specifying relaƟonal representaƟons and access informaƟon of objects (SecƟon 3.2),

• an evaluaƟon method for relaƟonal queries in an object-oriented environment (SecƟon 3.3),
and

• the formal descripƟon of an extension to the join relaƟonal operator introduced to achieve the
mapping of object associaƟons into a relaƟonal representaƟon (SecƟon 3.4).

Finally, SecƟon 3.5 describes the soŌware architecture of our relaƟonal interface.

3.1 RelaƟonal representaƟon of objects

The problem of transforming object-oriented data to their relaƟonal counterpart, and vice versa, has
been studied thoroughly in the literature [BK06, MAB07]. We address a diīerent but related, prob-
lem: how to deĮne a relaƟonal representaƟon of an underlying object-oriented datamodel. Providing
a relaƟonal interface to object-oriented data without storing them in a relaƟonal database manage-
ment system is not straighƞorward; the issue at hand is not the transformaƟon of data from object
structures into relaƟonal structures, but the representaƟon of data in diīerent models. In other
words, we do not transform the object data; instead we want to provide a relaƟonal view on top of
it. Issues that emerge in bidirecƟonal transformaƟons [CFH+09] between data models, such as the
Ê-Ù data mapping, are not examined.

33
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Figure 3.1: has-a associaƟon
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+ascend: double
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+getRectArea(): RectangleArea const
+getTrackPoints(): QList<CTrack::pt_t> const
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TrackWaypoint
+x: int
+y: int
+lon: int
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+speed: double
+azimuth: double
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(a) Class diagram

N1

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

Track_VT

descend DOUBLE
ascend DOUBLE

totalTime INT

FOREIGN KEY(trackWaypoints_set_id)
REFERENCES TrackWaypoint_VT

distance DOUBLE

qrectf_x INT

qrectf_width INT
qrectf_height INT

qrectf_y INT

(b) Virtual table schema
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(c) Linux model

N

1

EVirtualMem_VT

users INT

task_size BIGINT

count INT

total_vm BIGINT

locked_vm BIGINT

shared_vm BIGINT

1

1

EFile_VT

flags INT

mode INT

pos INT

Process_VT

name TEXT

state INT

FOREIGN KEY(vm_id) 

REFERENCES EVirtualMem_VT

FOREIGN KEY(fs_fd_file_id) 

REFERENCES EFile_VT

fs_fd_max_fds INT

fs_fd_open_fds BIGINT

fs_next_fd INT

base BIGINT

base BIGINT

(d) Virtual table schema

Figure 3.2: Has-one and has-many associaƟons between data structures are normalized or denormal-
ized in the virtual relaƟonal schema.

In ourwork the underlying datamodel can be object-oriented and therefore requires us to address
features, such as inheritance and subtype polymorphism in queries. To do that we must solve the
representaƟon mismatch between relaƟons and objects. RelaƟons consist of a set of columns that
host scalar values, while objects and their relaƟonships form graphs of an arbitrary structure.

Our method deĮnes three basic enƟƟes: objects, object associaƟons and virtual relaƟonal tables.
SpeciĮcally, it provides a relaƟonal representaƟon of objects and object associaƟons in the form of
virtual relaƟonal tables. Objects can be unary class instances or containers grouping mulƟple objects.
Object associaƟons include has-a associaƟons between objects,many-to-many associaƟons between
objects, and is-a associaƟons and subtype polymorphism.

We exemplify our method in the context of a) a ¦®Ý applicaƟon, which uƟlizes the above associa-
Ɵons to model ¦ÖÝ data, such as tracks and waypoints, and b) the Linux kernel data model regarding
processes, Įles, and virtual memory. The outcome is a queryable relaƟonal representaƟon of the ¦®Ý
applicaƟon’s and the Linux kernel’s data model respecƟvely.

3.1.1 Mapping has-a associaƟons

Has-a associaƟons are of two types: has-one and has-many. To describe them we deĮne the con-
taining object to be an object with some contents and the contained to be those contents. Has-one
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associaƟons include objects and references to objects. These are represented as columns in a virtual
table that stands for the containing object. Has-many associaƟons include collecƟons of contained
objects and references to collecƟons of contained objects. These are represented by an associated
table that stands for the collecƟon of contained objects. Although the associated table’s schema is
staƟc, the contents of the associated table are speciĮc to the containing object instance: each in-
stance of the containing instance has disƟnct contents. It is possible to deĮne a separate table also
for has-one associaƟons.

Figure 3.1(a) shows the class diagramof a ¦®Ý applicaƟon’s object-oriented datamodel. Itmodels a
track’s rectangle area that includes the track and track waypoints onmaps using recorded coordinates
from ¦ÖÝ devices. Figure 3.1(b) shows the respecƟve virtual table schema. On the schema, each
record in the map track table (Track_òã) represents a track. A track’s associated bounding rectangle
has been included in the track’s representaƟon: each aƩribute of the RectangleArea class occupies a
column in Track_òã. In the same table, foreign key column trackWaypoints_set_id idenƟĮes the set of
trackwaypoints that the track contains. A track’s waypoint informaƟonmay be retrieved by specifying
in a query a join with the track waypoint table (TrackWaypoint_òã). This speciĮcaƟon gives rise to an
instanƟaƟon. The instanƟaƟon of the waypoint table is track speciĮc; it contains the waypoints of the
current track only. For another track another instanƟaƟonwould be created. Thus, mulƟple instances
of TrackWaypoint_VT implicitly exist in the background as Figure 3.1(b) shows.

In our method we provide each virtual table represenƟng a nested data structure with a column
named base, which takes part in has-a associaƟons. The one side of the associaƟon is rendered by
a foreign key column, which idenƟĮes the contents of an associated table as shown in the previous
example, while the other side is rendered by the associated table’s base column, which fulĮlls an
appropriate instanƟaƟon. The base column is instrumental for mapping associaƟons into a relaƟonal
representaƟon. We expand on this subject at SecƟon 3.3.

Let’s consider another example drawn from a procedural programming datamodel, Linux kernel’s
more speciĮcally. Figure 3.2(a) shows a simpliĮed kernel data structure model of the Linux kernel’s
Įles, processes, and virtual memory. Figure 3.2(b) shows the respecƟve virtual table schema. There,
a process’s associated virtual memory structure (mm_struct) has been represented in an associated
table (EVirtualMem_òã). The same applies for a process’s open Įles (Įle), a has-many associaƟon,
which is represented by EFile_òã.

As we already menƟoned an associated table is opƟonal for has-one associaƟons. In the same
schema, for instance, the structure fdtablehas been included in its associatedĮles_struct andĮles_struct
has been included within the associated process’s representaƟon. Consequently, each member of
fdtable andĮles_structoccupies a column in Process_òã, that is, column fs_next_fdmaps toĮle_struct’s
next_fdmember and columns whose name starts with fs_fd_map to fdtable’s members. By allowing
to represent a has-one associaƟon as a separate table or inside the containing instance’s table the
relaƟonal representaƟon Ňexibly expands or folds to meet representaƟon objecƟves.

Combining virtual tables in queries is achieved through join operaƟons. In table Process_òã the
foreign key column fs_fd_Įle_id idenƟĮes the set of Įles that a process retains open. A process’s open
Įle informaƟon can be retrieved by specifying in a query a join to the Įle table (EFile_òã). By specifying
a join to the Įle table, an instanƟaƟon happens. The instanƟaƟon of the Įle table is process speciĮc;
it contains the open Įles of a speciĮc process only. For another process another instanƟaƟon would
be created. Thus, as in the previous example, mulƟple potenƟal instances of EFile_VT exist implicitly,
as Figure 3.2(b) shows.

3.1.2 Mappingmany-to-many associaƟons

Many-to-many associaƟons require no special treatment; they are treated similarly to has-many as-
sociaƟons. ConƟnuing with the ¦®Ý applicaƟon example, suppose that, in addiƟon to the above spec-
iĮcaƟon, a waypoint can be part of many tracks (Figure 3.3). The relaƟonship can be described as
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Figure 3.3: Many-to-many associaƟon
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(a) Class diagram
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(b) Virtual table schema

a has-many associaƟon from both sides, that is, waypoint to track and vice versa. The eīect in the
virtual table schema is mulƟple instanƟaƟons for Track_òã as well, since it is now possible to idenƟfy
the tracks that contain a speciĮc waypoint.

In the relaƟonal model, amany-to-many relaƟonship requires an intermediate table for the map-
ping. In our method virtual tables provide a relaƟonal representaƟon of an applicaƟon’s data struc-
tures, but are only views of the data. For each instance of a Track (say Athens_Marathon) a disƟnct
TrackWaypoint_òã (say Athens_Marathon_TrackWaypoint_òã) virtual table is instanƟated. Similarly,
for each instanceof a TrackWayPoint (sayOlympic_Stadium) a disƟnct Track_òã (sayOlympic_Stadium_Track_òã)
is instanƟated.

3.1.3 Mapping is-a associaƟons

The support of is-a associaƟons in the object-oriented paradigm provides powerful features, namely
inheritance and subtype polymorphism. Our method oīers two ways to incorporate ÊÊ inheritance
and subtype polymorphism addressable at a relaƟonal representaƟon of data structures; Figure 3.4(a)
presents an example inheritance hierarchy. These ways correspond to two of the object-relaƟonal
mapping strategies presented in SecƟon 2.2.2.1. Currently our relaƟonal representaƟon does not
support mulƟple inheritance.

First, it is possible to represent each class in the inheritance hierarchy as a separate virtual table
and use a relaƟonship to link them (Figure 3.4(b)), following the table to class mapping approach.
Second, it is possible to include inherited members as columns in each of the subclasses represented
as virtual tables (Figure 3.4(c)), following the table to concrete classmapping approach.

For polymorphic containers care must be taken in represenƟng their contents that involve sub-
types of the container element type. Suppose we represented a polymorphic container of map ele-
ments, that is each element could be a reference to a Track or TrackWaypoint, as in Figure 3.5(a). Vir-
tual table MapElement_òã (Figure 3.5(b)), which represents the container of map elements, includes
columns that map to members of MapElement type. In this way basic map element informaƟon can
be retrieved directly fromMapElement_òã. Virtual table Track_òã includes columns thatmap tomem-
bers of type Track. Similarly virtual table TrackWaypoint_òã includes columns that map to members
of type TrackWaypoint. A relaƟonship instance links the virtual table represenƟng the base class with
the virtual table represenƟng a derived class. Consequently track and waypoint informaƟon can be
retrieved from the virtual tables represenƟng the derived classes through the relaƟonship instances.
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3.2. A DOMAIN SPECIFIC LANGUAGE FOR DEFINING RELATIONAL REPRESENTATIONS OF DATA

STRUCTURES

Figure 3.4: Inheritance and subtype polymorphism support
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Figure 3.5: Full support of polymorphic containers
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description TEXT
comment TEXT
timestamp INT
FOREIGN KEY(Track_id)
REFERENCES Track_VT
FOREIGN KEY(trackWaypoint_id)
REFERENCES TrackWaypoint_VT

Track_VT

descend DOUBLE
ascend DOUBLE

totalTime INT

FOREIGN KEY(trackWaypoints_set_id)
REFERENCES TrackWayPoint_VT

distance DOUBLE

qrectf_x INT

qrectf_width INT
qrectf_height INT

qrectf_y INT

base BIGINT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

(b) Virtual table schema

3.2 A domain speciĮc language for deĮning relaƟonal representaƟons of
data structures

Our method provides a �Ý½ for describing the mapping of the ÊÊ data into a relaƟonal model. The
mapping is performed in two steps:

1. struct view deĮniƟons describe a virtual table’s columns and

2. virtual table deĮniƟons link a struct view deĮniƟon to a program’s data structure type.

Together they compose a relaƟonal representaƟon deĮniƟon. The �Ý½’s syntax is formally described
in Figure 3.6 using Backus-Naur Form (�Ä¥) notaƟon.

3.2.1 Struct view deĮniƟon

Struct view deĮniƟons (LisƟngs 3.1 – 3.3) describe the columns of a virtual table. They resemble
relaƟonal table deĮniƟons. Struct view deĮniƟons include the struct view’s name and its aƩributes.
Each aƩribute descripƟon contains the essenƟal informaƟon for deĮning a virtual table column.
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Figure 3.6: �Ý½ syntax in �Ä¥ notaƟon

; Virtual table deĮniƟon

<virtual_table_def> ::= ’CREATE VIRTUAL TABLE’<virtual table name>

’USING STRUCT VIEW’<struct view name>

[’WITH REGISTERED NAME’<base variable>]

’WITH REGISTERED TYPE’<struct_type>

[’USING LOOP’<loop_variant>] ’$’

<struct_type> ::= <container> |<object> |<struct> |
<primiƟve_data_type> [’*’]

<container> ::= (<container_class> ’<’<struct_type>

; if associaƟve container

[’,’<struct_type>] ’>’ [’*’]) |<C_container>

<container_class> ::= ’list’ | ’vector’ | ’deque’ | ’set’ | ’mulƟset’ | ’map’ |
’mulƟmap’ | <any traversable container>

<C_container> ::= <d_type> |<struct> ’:’ <d_type>

<d_type> ::= <struct> |<primiƟve_data_type> [’*’]

<struct> ::= [’struct’]<struct name> [’*’]

<primiƟve_data_type> ::= ’int’ | ’string’ | ’double’ | ’char’ | ’Ňoat’ | ’real’ |
’bool’ | ’bigint’

<object> ::= <class name> [’*’]

<loop_variant> ::= <user deĮned loop variant>

; Struct view deĮniƟon

<struct_view_def> ::= ’CREATE STRUCT VIEW’<struct view name> ’(’

<column_def> {’,\n’<column_def>} ’)$’

<column_def> ::= <primiƟve_column_def> |<struct_column_def> |
<struct_view_inclusion>

<primiƟve_column_def> ::= <column name><primiƟve_data_type> ’FROM’

<access_statement>

<struct_column_def> ::= ’FOREIGN KEY(’<column name> ’) FROM’

<access_statement> ’REFERENCES’

<virtual table name> [’POINTER’]

<access_statement> ::= <valid C/C++ expression> | ’tuple_iter’

<struct_view_inclusion> ::= ’INCLUDES STRUCT VIEW’<struct view name>

[’FROM’<access_statement> [’POINTER’]]

; Standard relaƟonal view deĮniƟon

<rel_view_def> ::= <ANSI 92 SQL standard> ’$’
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LisƟng 3.1: Struct view deĮniƟon - member methods as access paths
CREATE STRUCT VIEWMapElement_SV (
name STRING FROM getName().toStdString(),
descripƟon STRING FROM getDescripƟon(). toStdString (),
comment STRING FROM getComment().toStdString(),
Ɵmestamp INT FROM getTimestamp())

LisƟng 3.2: Struct view deĮniƟon - is-a table per class mapping (Figure 3.4(b)) and has-a relaƟonship
normalizaƟon (Figure 3.3(b))
CREATE STRUCT VIEW TrackWaypoint_SV (
FOREIGN KEY(mapElement_id) FROM tuple_iter // is−a table per class

REFERENCES MapElement_VT,
x INT FROM x,
y INT FROM y,
lon FLOAT FROM lon,
lat FLOAT FROM lat,
ele FLOAT FROM ele,
speed FLOAT FROM speed,
azimuth DOUBLE FROM azimuth,
heartrateBPM INT FROM heartRateBpm,
FOREIGN KEY(tracks_set_id) FROM get_tracks() // has−a relaƟonship

REFERENCES Track_VT) // normalizaƟon

LisƟng 3.3: Struct view deĮniƟon - is-a table per concrete class mapping (Figure 3.4(c)) and has-one
ŇaƩening (Figure 3.3(b))
CREATE STRUCT VIEW Track_SV (
INCLUDES STRUCT VIEWMapElement_SV FROM tuple_iter.value() POINTER,

// is−a table per concrete class
descend DOUBLE FROM tuple_iter.value()−>getDescend(),
ascend DOUBLE FROM tuple_iter.value()−>getAscend(),
distance DOUBLE FROM tuple_iter.value()−>getTotalDistance (),
totalTime INT FROM tuple_iter.value()−>getTotalTime (),
FOREIGN KEY(trackWaypoints_set_id) FROM tuple_iter.value()−>getTrackWaypoints()

REFERENCES TrackWaypoint_VT POINTER,
INCLUDES STRUCT VIEW RectangleArea_SV FROM tuple_iter.value()−>getBoundingRectF())

// has−one ŇaƩening

Column deĮniƟons are of two types, data column deĮniƟons and special column deĮniƟons for
represenƟng has-a,many-many, and is-a object associaƟons. Data column deĮniƟons include the col-
umn’s name, data type, and access path, that is, a �/�++ expression that retrieves the column value
from the object. Except for a path expression to an object member, an access path can consist of
a method call that preserves state (LisƟng 3.1). Special column deĮniƟons are of two kinds, foreign
key deĮniƟons (LisƟng 3.2) and struct view inclusion deĮniƟons (LisƟng 3.3). Foreign key deĮniƟons
include the column’s name, access path, and associated virtual table, while struct view inclusion def-
iniƟons include the column’s name, the relaƟonal view of the included data structure, and the access
path to this data structure.

The foreign key column deĮniƟon (LisƟng 3.2) supports relaƟonships between virtual tables that
represent a has-a or an is-a associaƟon between the underlying data structures. A foreign key spec-
iĮcaƟon resembles its relaƟonal counterpart except that referenƟal constraints are not checked in
this context and no matching column of the referenced table is speciĮed. This is because the for-
eign key column matches against an auto-generated column of the referenced virtual table, the base
column. The base column does not appear in relaƟonal representaƟon deĮniƟons because the �Ý½
parser-compiler can understand when the column is required and generates the appropriate code for
it.
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LisƟng 3.4: Struct view deĮniƟon includes the mapping of has-a inclusion (Figure 3.2(b)) in the virtual
table schema.
CREATE STRUCT VIEW FilesStruct_SV (
next_fd INT FROM next_fd,
INCLUDES STRUCT VIEW Fdtable_SV FROM tuple_iter)

LisƟng 3.5: Struct view deĮniƟon can contain calls to custom funcƟons in column access paths.
...
long check_kvm(struct Įle *f) {

if ((! strcmp(f−>f_path.dentry−>d_name.name,
”kvm−vm”)) &&

( f−>f_owner.uid == 0) &&
( f−>f_owner.euid == 0))

return ( long) f−>private_data;
return 0;

}
$
...
CREATE STRUCT VIEW File_SV (

...
FOREIGN KEY(kvm_id) FROM check_kvm(tuple_iter)
REFERENCEStKVM_VT POINTER) )

LisƟng 3.6: Example of customized loop variant for traversing track waypoint list
#deĮne TW_VT_begin(X,Y) X = Y−>begin()
#deĮne TW_VT_end(X,Y) X != Y−>end()
#deĮne TW_VT_advance(X) X++

CREATE VIRTUAL TABLE TrackWaypoint_VT
USING STRUCT VIEW TrackWaypoint_SV
WITH REGISTERED C NAME trackwaypoints
WITH REGISTERED C TYPE QList<CTrack :: pt_t>: QList<CTrack :: pt_t >:: iterator
USING LOOP for (TW_VT_begin(tuple_iter,base ), TW_VT_end(tuple_iter,base),

TW_VT_advance(tuple_iter))
USING LOCK QMutex(base−>twp_mutex)

LisƟngs 3.2 and 3.3 illustrate the supported inheritance mapping opƟons in terms of the �Ý½. List-
ing 3.2 shows how to represent each class in the inheritance hierarchy as a separate virtual table
(table per classmapping) and using a relaƟonship to link them. tuple_iter is a language keyword that
denotes a virtual table’s tuple iterator. It selects an access path to reach a member nested to a repre-
sented object. If the access path’s selector can be derived from the speciĮcaƟon, the keyword can be
omiƩed as in LisƟng 3.1. The tuple iterator can be also passed as a method argument. In LisƟng 3.2
we specify as access path the tuple iterator itself to reference each tuple’s represented object. It is
used to support an inheritance mapping through a relaƟonship instance. The object’s idenƟty is ade-
quate informaƟon for the mapping in these cases. On the other hand, LisƟng 3.3 shows the support
for including inherited members as columns in each of the subclasses represented as virtual tables
(table per concrete classmapping).

Including relaƟonal representaƟons into others is useful for represenƟng not only is-a but also
has-one associaƟons inline (LisƟng 3.3). Such is the case with a bounding rectangle included in a
track’s relaƟonal representaƟon in Figure 3.3. Another example is the associaƟon between Įles and
processes in the Linux kernel. Instead of mapping structures’ fdtable and Įles_struct Įelds manually
to Process_Ýò columns, one can use the ®Ä�½ç��Ý ÝãÙç�ã ò®�ó direcƟve to reuse struct view deĮni-
Ɵons. LisƟng 3.4 shows how the relaƟonal representaƟon of fdtable (Fdtable_Ýò) deĮned elsewhere
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can be included to structure’s Įles_struct relaƟonal representaƟon (FilesStruct_Ýò). Mapping an as-
sociated fdtable to another data structure’s relaƟonal representaƟon besides Įles_struct’s requires
only a similar ®Ä�½ç��Ý ÝãÙç�ã ò®�ó direcƟve to the one presented in LisƟng 3.4.

LisƟng 3.5 demonstrates somemore characterisƟcs of the �Ý½. First, the special idenƟĮer ÖÊ®Äã�Ù
is used to denote that the column maps to a pointer type. It is required to generate code that meets
mapped data structures’ types. Second, the extensive use of path expressions [FLU94] in access paths
is a core aspect of the mapping method and of the query evaluaƟon technique. Path expressions
idenƟfy a data structure by specifying how to navigate to it in a graph of data structures. Third, ac-
cessing kernel informaƟon oŌen requires addiƟonal constructs, such as calling kernel funcƟons and
macros. For instance, paging informaƟon in the kernel should be accessed through the kernel func-
Ɵon find_get_pages() in order to access memory page uƟlizaƟon per process. The �Ý½ accepts calls
to funcƟons and macros and deĮnes a reserved keyword, tuple_iter to allow references to a virtual
table’s tuple iterator.

From our experience in querying data structures, it is also very useful to be able to write a block
of code relevant to an access path in order to manipulate data or deĮne condiƟons. For this purpose,
a �Ý½ Įle can start with code of the applicaƟon’s programming language, e.g., � code. This comprises
include direcƟves, macro deĮniƟons, and funcƟon deĮniƟons. FuncƟons and macros can then be
called from an access path context as shown in LisƟng 3.5. The deĮned funcƟon check_kvm() accepts
an open Įle and tests whether the Įle belongs to a Kernel-based Virtual Machine (»òÃ) [KKL+07]
virtual machine (òÃ) instance. »òÃ is manageable through Įle descriptors and a set of ioctl calls that
operate on open Įle handles. Through this interface authorized users can manipulate òÃ instances
and allocated virtual �Öçs. Behind the scenes, a data structure modelling an open Įle – the usual
struct Įle – maps back to a data structure modelling a »òÃ òÃ or virtual �Öç instance depending on
the ioctl call. We leverage this mapping to access »òÃ related data structures. With check_kvm()we
ensure that the Įle is indeed an interface to a »òÃ òÃ or virtual �Öç by checking the Įle’s name and
Įle ownership against the root user’s account id.

3.2.2 Virtual table deĮniƟon

Virtual table deĮniƟons (LisƟng 3.7) link a data structure to its relaƟonal representaƟon. They carry
the virtual table’s name and informaƟon about the data structure it represents. Data structure infor-
maƟon includes an idenƟĮer (Ä�Ã�) and a type (ãùÖ�); the idenƟĮer maps the applicaƟon code data
structure to its virtual table representaƟon; the type must agree with the data structure’s program-
ming language type. The idenƟĮer is omiƩed if the data structure is nested in another data structure.
A virtual table deĮniƟon always links to a struct view deĮniƟon through the çÝ®Ä¦ ÝãÙç�ã ò®�ó syntax.

An interface is required for traversing data structures to execute queries. The çÝ®Ä¦ ½ÊÊÖ direcƟve
serves this purpose. In our approach, a container/iterator-based uniform abstracƟon is uƟlized that
wraps diverse types of data structures. For example, LisƟng 3.6 makes use of a standard �++ Ýã½ loop
variant for traversing Ýã½-like collecƟons. If this is the case the direcƟve can be omiƩed as in LisƟng 3.7,
but in absence of such a mechanism user deĮned macros in the Įrst part of a �Ý½ descripƟon can
customize the loop variant by means of iterator methods (declare, begin, end, advance). This is
parƟcularly useful for traversing bespoke collecƟons, which are found in the � programming language,
and in domains such as systems programming, embedded applicaƟons, and scienƟĮc compuƟng. The
�Ý½ parser will subsƟtute references to base, which abstracts the data structure instanƟaƟon, with an
appropriate variable instance. LisƟng 3.8 presents amore sophisƟcated example for iteraƟng an array
of open Įle objects using a bit array that records the indexes of open Įle objects in the array.

To synchronize accesswith other execuƟonpaths, theçÝ®Ä¦ ½Ê�»direcƟve selects a lockingmethod
from those deĮned in the �Ý½. twp_mutex is an object of type mutex used to serialize access to the
list of track points, that is trackwaypoints.



42 / 121
3.3. MAPPING A RELATIONAL QUERY EVALUATION TO THE UNDERLYING OBJECT-ORIENTED

ENVIRONMENT

LisƟng 3.7: Virtual table deĮniƟon
CREATE VIRTUAL TABLE TrackWaypoint_VT
USING STRUCT VIEW TrackWaypoint_SV
WITH REGISTERED C NAME trackwaypoints
WITH REGISTERED C TYPE QList<CTrack :: pt_t>
USING LOCK QMutex(base−>twp_mutex)

LisƟng 3.8: Virtual table deĮniƟon includes a customized loop variant for traversing Įle array.
#deĮne EFile_VT_decl (X) struct Įle *X; \

int bit = 0
#deĮne EFile_VT_begin (X, Y, Z) \

(X) = (Y )[( Z )]
#deĮne EFile_VT_advance(X, Y, Z) \

EFile_VT_begin (X,Y,Z)

CREATE VIRTUAL TABLE EFile_VT
USING STRUCT VIEW File_SV
WITH REGISTERED C TYPE struct fdtable : struct Įle *
USING LOOP for (

EFile_VT_begin ( tuple_iter , base−>fd,
( bit = Įnd_Įrst_bit (
(unsigned long *)base−>open_fds,
base−>max_fds)));

bit < base−>max_fds;
EFile_VT_advance( tuple_iter , base−>fd,

( bit = Įnd_next_bit (
(unsigned long *)base−>open_fds,
base−>max_fds, bit + 1))))

LisƟng 3.9: Lock/unlock direcƟve deĮniƟon
CREATE LOCK QMutex(m)
HOLD WITH m.lock()
RELEASE WITH m.unlock()

Ad-hoc in-place querying requires locking data structures to ensure synchronizaƟon for concur-
rent accesses. Since ourmethod needs only read access to program data structures, serializaƟonwith
concurrent write accesses is required. For the ¦®Ý applicaƟon, the �Ý½’s lock/unlock direcƟves can be
seen in LisƟng 3.9.

To support recurring queries andminimizeƟme-to-query in these cases relaƟonal non-materialized
views can be deĮned in the �Ý½ using the standard �Ù��ã� ò®�ó notaƟon, as exempliĮed in LisƟng 3.10.
The parƟcular view deĮnes an alias for queries that access »òÃ virtual machine instances in the sys-
tem. A similar view deĮniƟon wraps the representaƟon of virtual �Öç instances.

3.3 Mapping a relaƟonal query evaluaƟon to theunderlying object-oriented
environment

The relaƟonal representaƟon of a data structure comprises one or more virtual tables. Each virtual
table in the representaƟon enables access to some part of a data structure using path expressions
(see LisƟng 3.11 for an example of the underlying auto-generated rouƟnes). For example, a container
of Track objects could be represented by rendering the is-a associaƟon between classesMapElement
and Track via a table per class mapping — recall Figure 3.4(b); then the design would include two
virtual tables, one for each class. The virtual table represenƟng theMapElement type provides access
toMapElementmembers, while the virtual table represenƟng the Track type provides access to Track
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LisƟng 3.10: RelaƟonal view deĮniƟon idenƟĮes »òÃ òÃ instances.
CREATE VIEW KVM_View AS
SELECT P.name AS kvm_process_name, users AS kvm_users,
P.inode_name AS kvm_inode_name, online_vcpus AS kvm_online_vcpus,
stats_id AS kvm_stats_id , online_vcpus_id AS kvm_online_vcpus_id,
tlbs_dirty AS kvm_tlbs_dirty , pit_state_id AS kvm_pit_state_id

FROM Process_VT as P
JOIN EFile_VT as F
ON F.base = P. fs_fd_Įle_id
JOIN EKVM_VT AS KVM
ON KVM.base = F.kvm_id;

LisƟng 3.11: The �Ý½ compiler generates code for the virtual table interface.
int Process_VT_search (...) {

...
switch( col ) {
case 0:

list_for_each_entry_rcu ( tuple_iter , \
& init_task−>tasks, tasks ) {

if (compare(tuple_iter−>comm,operator,rhs)
add_to_result_set ();

}
case 1:

list_for_each_entry_rcu ( tuple_iter , \
& init_task−>tasks, tasks ) {

if (compare(tuple_iter−>state,operator , rhs )
add_to_result_set ();

}
case ...
}

}

members.
Another example drawn from the Linux kernel data model has Process_òã represent some Įelds

of task_struct. Since task_struct’s has-a associaƟon with mm_struct has been modeled as a sepa-
rate virtual table (EVirtualMem_òã), the laƩer provides access to the associated mm_struct Įelds.
Member access is provided by path expressions according to the �Ý½ speciĮcaƟon.

Virtual tables may be combined in ÝØ½ queries by means of join operaƟons (LisƟngs 3.12, 3.13).
Data structures may span arbitrary levels of nesƟng. Although the nested data structure may be
represented as one or more virtual table(s) in the relaƟonal interface, access to it is available through
the parent data structure only. The virtual table represenƟng the nested data structure (òãn) can only
be used in ÝØ½ queries combined with the virtual table represenƟng the parent data structure (òãp).
For instance, one cannot select a track’s associated bounding rectangle without Įrst selecƟng the
track. If such a query is input, it results in an empty instanƟaƟon, that is an empty result set.

A join is required to allow querying of òãns. The join uses the column of the òãp that refers to
the nested structure (similar to a foreign key) and the òãn’s base column, which acts as an internal
idenƟĮer. When a join operaƟon references the òãn’s base column it instanƟates the òãn by seƫng the
foreign key column’s value to the base column. This drives the new instanƟaƟon thereby performing
the equivalent of a join operaƟon: for each value of the join aƩribute, that is the foreign key column,
the operaƟon Įnds the collecƟon of tuples in each table parƟcipaƟng in the join that contain that
value. In our case the join is essenƟally a pre-computed one and, therefore, it has the cost of a pointer
traversal. The base column acts as the acƟvaƟon interface of a òãn, and guarantees type-safety by
checking that the òãn’s speciĮcaƟon is appropriate for represenƟng the nested data structure.
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LisƟng 3.12: Join query — querying has-a and is-a associaƟons
SELECT *
FROM Track_VT
JOIN TrackWaypoint_VT
ON TrackWaypoint_VT.base = Track_VT. trackWaypoints_set_id
JOIN MapElement_VT
ONMapElement_VT.base = TrackWaypoint_VT.mapElement_id;

LisƟng 3.13: Join query — querying polymorphic containers
SELECT *
FROMMapElement_VT
JOIN Track_VT
ON Track_VT.base=MapElement_VT.track_id
JOIN TrackWaypoint_VT
ON TrackWaypoint_VT.base=MapElement_VT.trackWaypoint_id;

LisƟng 3.14: RelaƟonal join query
SELECT *
FROM TrackWaypoint_VT AS TW, WaypointInterest_VT ASWI
WHERE sqrt(power(TW.x−WI.x, 2) + power(TW.y−WI.y, 2)) < 1;

LisƟng 3.15: RelaƟonal join query shows which processes have same Įles open.
SELECT P1.name, F1.inode_name, P2.name, F2.inode_name
FROM Process_VT AS P1
JOIN EFile_VT AS F1
ON F1.base = P1. fs_fd_Įle_id ,
Process_VT AS P2
JOIN EFile_VT AS F2
ON F2.base = P2. fs_fd_Įle_id
WHERE P1.pid <> P2.pid
AND F1.path_mount = F2.path_mount
AND F1.path_dentry = F2.path_dentry
AND F1.inode_name NOT IN (‘null ’ ,‘ ’ );

Queries to polymorphic containers (LisƟng 3.13) require addiƟonal checks to ensure type-safety.
Columns that map to derived type container members may be accessed by issuing joins to link the
relaƟonal representaƟon of the base class to the relaƟonal representaƟons of the derived classes.
Joins between virtual tables take the form of leŌ outer joins; hence join operaƟons trigger checks to
match a container element’s derived type against the type represented by a derived class’ relaƟonal
representaƟon. In the case of a MapElement_òã container element that is a reference to a Track
object instance, the type check performed when joining with Track_òã will succeed, since Track_òã
represents type Track, while the type check resulƟng from joining with TrackWaypoint_òã will fail in a
controlled manner. In the result set the columns of the relaƟonal representaƟons of derived classes
other than the one the element belongs to are populated with null values. Type checks ensure type
consistency for each container element.

In addiƟon to combining relaƟonal representaƟons of associated data structures in an ÝØ½ query,
joins may also be used to combine relaƟonal representaƟons of unassociated data structures; this is
implemented through a nested loop join [SKS06, p. 542].

Consider as an example the case where wewould like to query the proximity between a collecƟon
of waypoints of interest and track waypoints. AŌer incorporaƟng the list of waypoints of interest in
the system and creaƟng its relaƟonal representaƟon (WaypointInterest_òã) we could issue the query
shown in LisƟng 3.14. Another example is presented in LisƟng 3.15. It returns which processes have
the same Įles open.



45 / 121 3.4. RELATIONAL ALGEBRA EXTENSION FOR VIRTUAL TABLE INSTANTIATIONS

3.4 RelaƟonal algebra extension for virtual table instanƟaƟons

Although relaƟonal algebra concerns sets of items, its operators can be applied to other types of item
collecƟons. According to Meijer et al. [Mei11], ½®ÄØ also builds on this approach.

RelaƟonal algebra [Cod70] deĮnes the join operator that combines relaƟons based on a common
domain. Many variants of the join operator appear in the database literatute [SKS11], such as the
θ -join and equijoin, the semijoin, the anƟjoin, the division, and outer joins.

The natural join (R ! S) produces all combinaƟons of tuples of relaƟons R and S, for which the
common aƩribute of the relaƟons has the same value.

The θ -join (R !θ S) produces all the combinaƟons of tuples of relaƟons R and S where the relaƟon
between the joined aƩributes’ value saƟsĮes the θ binary relaƟonal operator, which is one of
<,≤,=,≥,>. The equijoin is a speciĮc case of a θ -join where θ is the equality operator (=).

The semijoin (R! S) produces all tuples found in one relaƟon, for which a matching tuple exists in
the other relaƟon. SpeciĮcally, the leŌ semijoin will produce all tuples of relaƟon R that match
a tuple of relaƟon S. The deĮniƟon of the right semijoin (R"S) is similar.

The anƟjoin (R " S) produces all tuples found in relaƟon R that match with no tuples of relaƟon S.
It produces the complement of the respecƟve semijoin.

The division (R÷S) produces all tuples of relaƟon R containing aƩributes unique in R, for which all
combinaƟons of tuples with tuples in relaƟon S exist in relaƟon R.

The outer joins between two relaƟons will produce all tuples of one or both relaƟons regardless of
a match for a tuple. If a match is not made, the aƩributes corresponding to the other relaƟon
will be Įlled with default values, usually Äç½½. There are three types of outer joins, leŌ (R ! S)
where no match is required for tuples of relaƟon R, right (R ! S) where no match is required
for tuples of relaƟon S, and full (R ! S) where no match is required for either R or S.

Our method introduces an extension to the join relaƟonal operator, β ,1 to instanƟate virtual ta-
bles that represent object collecƟons accessible through others. Let Ξ be a virtual table represenƟng
an object collecƟon (the containing) and Λ a virtual table represenƟng an object collecƟon (the con-
tained) nested within the Įrst collecƟon. The instanƟaƟon of Λ relies on its base column, which is
matched to a corresponding foreign key column of Ξ ( f kbase). For each row of Ξ (say ξ∗) the oper-
ator instanƟates a virtual table (Λ∗) represenƟng the contained object collecƟon (presented in Sec-
Ɵons 3.1.1, 3.1.2). This operaƟon casts the foreign key column value into the contained object collec-
Ɵon’s type and the object collecƟon starƟng at this address is instanƟated through the virtual table
represenƟng it. A formal descripƟon is presented in LisƟng 3.16.

Taking aside the instanƟaƟon part, the β -join resembles a relaƟonal equijoin, because the join
aƩribute is explicitly menƟoned, the join always uses the equality operator, and it produces all com-
binaƟons of tuples of the two virtual tables.

3.5 SoŌware architecture

Figure 3.8 depicts Öi�Ê Ø½’s soŌware architecture. It consists of the following components:

• the Öi�Ê Ø½ �Ö®,
1The iniƟal leƩer of the Greek word βάση which means base
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LisƟng 3.16: Formal descripƟon of virtual table instanƟaƟons
Let β be an extension to the join relaƟonal operator casƟng an untyped

memory address into the address of an object , or a collecƟon of objects ,
π stand for the projecƟon operaƟon ,
Ξ be a virtual table instanƟaƟng the containing object collecƟon ,
ξ1,ξ2, ...,ξν be rows of virtual table Ξ, that is ξ1,ξ2, ... ξν ε Ξ, and
Λ1,Λ2, ...,Λν ,Λ be virtual table instanƟaƟons of the contained object collecƟon

then
β (π f kbase (ξ1))→ Λ1,

β (π f kbase (ξ2))→ Λ2,
...

β (π f kbase (ξν ))→ Λν ,

β (π f kbase (Ξ))→ Λ, where Λ = Λ1 ∪Λ2 ∪ ...∪Λν

• the ÝØ½ite [Owe06] database query engine,

• an implementaƟon of ÝØ½ite’s virtual table �Ö®,

• a source-code compiler or generator, and

• a web interface module.

Most components communicate through the delegaƟon connector, which signiĮes that a com-
ponent’s funcƟonality is realised by the linked component where the connector’s arrow leads. The
assembly connector, which denotes the use of a component’s interface by another component, ap-
pears at the top level where an applicaƟon requires the services of Öi�Ê Ø½ and for producing the
implementaƟon of the relaƟonal interface for querying the applicaƟon’s data structures. In the laƩer
case, the applicaƟon uses the services of the Öi�Ê Ø½ compiler by providing a relaƟonal representaƟon
of the applicaƟon’s data structures in the form of the Öi�Ê Ø½ �Ý½. A descripƟon of each component
follows.

The Öi�Ê Ø½ �Ö® provides the public interface to applicaƟons. Twomethods of the �Ö® are required to
get started with Öi�Ê Ø½, one for registering a program data structure with Öi�Ê Ø½ and another
for starƟng the query interface. The full �Ö® is given in Figure 3.7.

ÝØ½ite is an embeddable open source relaƟonal database system that supports ÝØ½ �ÄÝ®92. It features
a virtual table module, which provides users with the building blocks for aƩaching arbitrary
data sources to ÝØ½ite’s query engine. Data sources can beneĮt from the relaƟonal facet by
implemenƟng ÝØ½ite’s virtual table �Ö®. Because ÝØ½ite is embeddable, it is appropriate for use
as a query interface plugin to applicaƟons.

Öi�Ê Ø½ implements ÝØ½ite’s virtual table �Ö® in order to present a relaƟonal query interface to object-
oriented program data. The virtual table �Ö® implementaƟon splits in two parts. The one part
concerns �Ö® methods Įxed for all applicaƟons, such as the ones that open or close a virtual
table. The other part implements the �Ö® methods speciĮc to each applicaƟon. These carry
out query processing operaƟons, such as searching a virtual table or return a column of it.
Because virtual tables mirror program data structures, the query processing methods have to
be generated according to the data structures at hand.

The source code generator or meta-programming module, which is implemented in Ruby, takes a
speciĮcaƟon of virtual tables linked to an applicaƟon’s data structures and generates the im-
plementaƟon of the query processing methods. The virtual table speciĮcaƟon is wriƩen in the
Öi�Ê Ø½ �Ý½.
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Figure 3.7: The C++ Öi�Ê Ø½ �Ö® under the library’s namespace

namespace picoQL {
int init (const char** pragmas, int npragmas, int port_number, pthread_t *t );
void register_data (const void * collecƟon , const char * col_name);
int exec_query(const char *query, stringstream &s,

int (* callback )( sqlite3 *, sqlite3_stmt *, stringstream &));
int step_mute( sqlite3 *db, sqlite3_stmt *stmt, stringstream &s);
int step_text ( sqlite3 *db, sqlite3_stmt *stmt, stringstream &s);
int step_swill_html ( sqlite3 *db, sqlite3_stmt *stmt, stringstream &s);
int step_swill_json ( sqlite3 *db, sqlite3_stmt *stmt, stringstream &s);
int progress ( int n, int (* callback )( void *p), void *p);
int interrupt ();
int shutdown();
int create_funcƟon (const char *name, int argc , int text_rep , void *p,

void (*xFunc)( sqlite3_context *, int , sqlite3_value **),
void (*xStep )( sqlite3_context *, int , sqlite3_value **),
void (* xFinal )( sqlite3_context *));

}

The web interface module is responsible for passing query input from the web interface, which is
presented at a localhost port, to the ÝØ½ite engine. The interface hosts the schema of the rela-
Ɵonal representaƟon to facilitate query input. ÝØ½ite observes that the query regards a virtual
table and invokes the appropriate methods of the virtual table implementaƟon to perform the
query. Once a result set is ready, ÝØ½ite makes it available to the web interface for presentaƟon
to the user. The web interface is based on the Ýó®½½ library [LB02]. Ýó®½½ sets up a lightweight
pseudo web server that presents «ãÃ½ pages registered to it. In fact, the pages are � funcƟons
that blend «ãÃ½ and � code for parameterising a page with dynamic data, for instance a query’s
result set. Ýó®½½ supports «ããÖ methods, such as ¦�ã and ÖÊÝã.
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Chapter 4

Query interface implementaƟon

Pi�Ê Ø½ is an ÝØ½ query library currently available for �/�++ applicaƟons, the Linux kernel, and the
Valgrind instrumentaƟon framework. The cornerstone of the Öi�Ê Ø½ implementaƟon is a meta-
programming technique devised

• to create a relaƟonal representaƟon of arbitrary program data structures using a relaƟonal
speciĮcaƟon of these data structures, and

• to generate code for querying the data structures through their relaƟonal representaƟon.

The meta-programming component of Öi�Ê Ø½ is presented in SecƟon 4.1. Öi�Ê Ø½ leverages the
virtual table module [The13] of ÝØ½ite [Owe06], an embeddable database engine, to support ÝØ½
queries to data structures. We describe our virtual table implementaƟon in SecƟon 4.2. Then we
provide details on Öi�Ê Ø½’s ÝØ½ support using ÝØ½ite as point of reference (SecƟon 4.3) and present
the available query opƟmisaƟons (SecƟon 4.4). Pi�Ê Ø½’s user interface, which is described in Sec-
Ɵon 4.5, is web-based. It is implemented using the Ýó®½½ [LB02] library. We conclude the generic
implementaƟon descripƟon with the steps required to embed Öi�Ê Ø½ in applicaƟons (SecƟon 4.6).

Öi�Ê Ø½ has also been implemented as a loadable kernel module (½»Ã) for Linux. We present our
work there in a separate secƟon, SecƟon 4.7. SpeciĮcally, we describe the implementaƟon challenges
we encountered, the tailoring of the user interfaces for the kernel environment, and the security of
our approach. We deĮne consistency in the context of our work and state how we treat synchroniza-
Ɵon. In addiƟon, we present proof of Öi�Ê Ø½’s reliability through the use of a Linux kernel test suite.
Finally, we present Öi�Ê Ø½’s maintainability in the course of the kernel’s evoluƟon and discuss how
Öi�Ê Ø½ can be ported to other operaƟng system kernels.

We conclude this chapter with implementaƟon aspects for including Öi�Ê Ø½ in the Valgrind in-
strumentaƟon framework (SecƟon 4.8).

4.1 GeneraƟve programming

Our soluƟon to the problem of represenƟng any �/�++ data structure as a virtual table is based on
a user-driven relaƟonal speciĮcaƟon and a meta-programming technique, generaƟve programming.
SpeciĮcally, a parser-compiler analyzes relaƟonal speciĮcaƟons wriƩen in the Öi�Ê Ø½ �Ý½ and �/�++
program data structure informaƟon. Then it generates virtual table deĮniƟons and �/�++ callback
funcƟons for ÝØ½ queries. These funcƟons implement constraint evaluaƟon (LisƟng 3.11) and value
retrieval for each of a virtual table’s columns. The generaƟve programming component of Öi�Ê Ø½ is
implemented in Ruby [FM08].

49
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4.2 Virtual table implementaƟon

Öi�Ê Ø½ implements an ÝØ½ite virtual table module, that is a set of callback funcƟons that specify a
Öi�Ê Ø½ virtual table’s behavior. These are: create, destroy, connect, disconnect, open, close, Įlter,
column, plan, advance_cursor, and eof. The ÝØ½ite query engine calls these funcƟons when perform-
ing a query on a Öi�Ê Ø½ virtual table. Hence queries are resolved by execuƟng the implemented
callback funcƟons, which operate on the �/�++ applicaƟon data structures.

In query processing, Öi�Ê Ø½ and ÝØ½ite share responsibiliƟes. Pi�Ê Ø½ controls query planning
through an implemented callback funcƟon (plan) and carries out constraint and data management
for each virtual table. The hook in the query planner ensures that the constraint referencing the base
column has the highest priority in the constraint set for the virtual table represenƟng a nested data
structure (òãn) and, therefore, the instanƟaƟon will happen prior to evaluaƟng any real constraints.
This is important for ensuring integrity in query processing. SØ½ite performs high level query evalu-
aƟon and opƟmizaƟon [Owe06, p. 360]. For the most part, query eĸciency mirrors ÝØ½ite’s query
processing algorithms enhanced by simply following pointers in memory in the case of some join
operaƟons.

Having virtual table instanƟaƟons come into existence is not hard nor computaƟonally intensive.
A virtual table can be thought of as a concept whose rules are deĮned in the �Ý½. Data structures that
adhere to the concept’s rules use its representaƟon and instanƟate the virtual table. In eīect, a virtual
table is a structure that the query engine uses when the virtual table is referenced in a query. MulƟple
instanƟaƟons use the same structure and the structure stores a reference to its current instanƟaƟon;
a new virtual table instanƟaƟon has the cost of a pointer dereference.

4.3 SQL support

Öi�Ê Ø½ supports all relaƟonal algebra operators as implemented by ÝØ½ite in [Owe06], that is the Ý�-
½��ã part of ÝØ½92 excluding right outer joins and full outer joins. Queries expressed using the laƩer,
however, may be rewriƩen with supported operators [Owe06, p. 76]. For a right outer join, rear-
ranging the order of tables in the join produces a leŌ outer join. A full outer join may be transformed
using compound queries. The query engine is a standard relaƟonal query engine.

Providing relaƟonal views of data structures imposes one requirement to ÝØ½ queries. Virtual ta-
bles represenƟngparent data structures (òãp) have to be speciĮed before òãns in the ¥ÙÊÃclause. This
stems from the implementaƟon of ÝØ½ite’s syntacƟc join evaluaƟon and does not impose a limitaƟon
to query expressiveness. Let us clarify this through an example. The query in LisƟng 4.1 contains a join
operaƟon between FuncƟonNode and File. The former represents an array holding the instrumented
program’s funcƟon informaƟon with corresponding metadata. The laƩer represents a Įle, where a
funcƟon’s source code is contained. The join uses the foreign key column Įle_id of FuncƟonNode
that refers to File and File’s base column, which acts as an internal idenƟĮer. When an appropriate
join operaƟon references File’s base column it instanƟates File by seƫng the foreign key column’s
value to the base column. This drives the new instanƟaƟon thereby performing the equivalent of a
join operaƟon: for each value of the join aƩribute, that is the foreign key column, the operaƟon Įnds
the collecƟon of tuples in each table parƟcipaƟng in the join that contain that value. In our case the
join is essenƟally a precomputed one and, therefore, it has the cost of a pointer traversal. EssenƟally,
the foreign key column represents a reference to a data structure of type Įle_node. The base column
receives this reference and acts as the acƟvaƟon interface of File. Finally, the base column guaran-
tees type-safety by checking that File’s speciĮcaƟon is appropriate for represenƟng a data structure
of type Įle_node.

The virtual table �Ö® includes a funcƟon prototype for controlling query planning. Through the
callback funcƟon that controls query planning Öi�Ê Ø½ can ensure that the constraint referencing the
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LisƟng 4.1: Join query to combine funcƟon nodes and their associated Įle
SELECT *
FROM FuncƟonNode
JOIN File
ON File .base = FuncƟonNode. Įle_id ;

LisƟng 4.2: Query opƟmizaƟon – associaƟve access
SELECT *
FROM Track_VT
WHERE track_Ɵtle_key LIKE ‘Athens Marathon’;

base column has the highest priority in the constraint set for a virtual table represenƟng a nested
data structure, e.g., File, and, therefore, the instanƟaƟon will happen prior to evaluaƟng any real
constraints. In this way Öi�Ê Ø½ ensures integrity in query processing.

4.4 Query opƟmizaƟons

Öi�Ê Ø½ beneĮts from ÝØ½ite’s query rewrite opƟmizaƟons, e.g., subquery ŇaƩening. The ÝØ½ite query
opƟmizer [The14c] oīers ÊÙ, ��ãó��Ä, and ½®»� opƟmizaƟons in theó«�Ù� clause, join opƟmizaƟons,
and order by opƟmizaƟons associated with indices. However, these are not currently supported by
Öi�Ê Ø½; this is a future work plan. ÝØ½ite provides a virtual table �Ö® for indices and a command
that scans all indices of a database where there might be a choice between two or more indices and
gathers staƟsƟcs on the appropriateness of those indices.

Öi�Ê Ø½ leverages algorithmic implementaƟons of speciĮc container classes oīered by program-
ming language libraries to provide query evaluaƟon speedup when possible. For instance, queries on
virtual tables represenƟng containers that oīer associaƟve access, such asmap ormulƟmap, are op-
Ɵmized if a selecƟon predicate on the container’s key is speciĮed. Let Track_VT represent a container
of typemap that associates a track’s Ɵtle to the respecƟve track object. Then the query in LisƟng 4.2
takes advantage of the map’s index to retrieve informaƟon about the Athens Marathon track. In
addiƟon, Öi�Ê Ø½ queries that execute against collecƟons of items allow referencing items via their
posiƟon by selecƟng a special auto-generated column of the virtual table represenƟng the container,
the rownum column that records the index in the container where a speciĮc element is stored. For
container classes providing random access such as vector Öi�Ê Ø½ uƟlizes this trait to boost query
performance. Let TrackWaypoint_òã represent a container of type vector instead of a list, LisƟng 4.3
depicts a query leveraging the underlying container’s random access feature. The query selects the
ninth waypoint in order from the waypoint container.

4.5 Query interface

A user interface is required in order to issue queries and view the results. For this we adopt Ýó®½½,
a library that adds a web interface to �/�++ programs. Figure 4.1 shows Öi�Ê Ø½’s web-based query
interface. Each web page served by Ýó®½½ is implemented by a � funcƟon that blends «ãÃ½ and �/�++
applicaƟon code to present useful informaƟon about an applicaƟon. For the query interface three
such funcƟons are used, one to input queries, one to output query results, and one to display errors.
Using Ýó®½½ as a bridge the user interface can interact with ÝØ½ite easily through ÝØ½ite’s � �Ö®. Queries
are interpreted by the ÝØ½ite engine, which in turn calls the virtual table implementaƟon’s callback
funcƟons (secƟon 4.2). Non-blocking ®/Ê and polling for queries within a regularly executed funcƟon
provide the basis for interacƟve queries. Our modest asynchronous query approach through polling
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LisƟng 4.3: Query opƟmizaƟon – random access
SELECT *
FROM TrackWaypoint_VT
WHERE rownum = 9;

Figure 4.1: Web-based query interface

provides safe interacƟvity with a small penalty on Ɵmeliness. We have also added a Ù�Ýã interface
that presents the query results in ¹ÝÊÄ format [Cro06], thus allowing the query interface to be easily
used within �¹�ø [CPJ06] applicaƟons.

4.6 Embedding Öi�Ê Ø½ in applicaƟons

Prior to use with an applicaƟon, Öi�Ê Ø½ requires a one-oī setup process that includes three tasks
presented in Figure 4.2. These are:

1. register each data structure with Öi�Ê Ø½ using a simple method call within the applicaƟon’s
code and start the query library using another method call; these are shown in LisƟng 4.4.

2. write a relaƟonal representaƟon of the selected data structures in Öi�Ê Ø½’s domain speciĮc
language (�Ý½), which resembles relaƟonal table deĮniƟons. A number of applied examples
are present in Öi�Ê Ø½’s codebase1 and the project’s wiki pages highlight the installaƟon and
applicaƟon plugin process.2

3. compile the applicaƟon together with Öi�Ê Ø½ by including Öi�Ê Ø½’s direcƟves.

1 https://github.com/mfragkoulis/PiCO_QL/tree/ a) PiCO_QL-application-release/examples b)PiCO_
QL-kernel-release/src/Linux-kernel-mod c) PiCO_QL-Valgrind-release/src/Valgrind-mod

2 https://github.com/mfragkoulis/PiCO_QL/wiki/Quickstart

https://github.com/mfragkoulis/PiCO_QL/tree/
PiCO_QL-application-release/examples
PiCO_QL-kernel-release/src/Linux-kernel-mod
PiCO_QL-kernel-release/src/Linux-kernel-mod
PiCO_QL-Valgrind-release/src/Valgrind-mod
https://github.com/mfragkoulis/PiCO_QL/wiki/Quickstart
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Figure 4.2: Steps for plugging Öi�Ê Ø½ in an applicaƟon.
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LisƟng 4.4: Öi�Ê Ø½ direcƟves
#include ”pico_ql_search.h”
using picoQL;
...
register_data(”trackwaypoints”, &trackWaypoints);
init(NULL, 0, 8080, NULL);

4.7 Loadable module implementaƟon for the Linux kernel

The process for implemenƟng Öi�Ê Ø½ in the Linux kernel requires further acƟon in addiƟon to the
steps listed in SecƟon 4.6. SpeciĮcally, we implement the kernel module’s iniƟalizaƟon, permission,
ioctl, open, input, output, close, and exit rouƟnes in order to provide an interface to Öi�Ê Ø½. The
query library’s involvement in this step is to register virtual tables represenƟng kernel data structures
and start the query library at the module’s iniƟalizaƟon rouƟne. It then receives a query from the
module’s input buīer, places a result set into the module’s output buīer and terminates the query
library through the module’s exit rouƟne. Finally, we compile Öi�Ê Ø½ ½»Ã with the Linux kernel.

Themain challenge in producing a loadablemodule is to compile ÝØ½ite with the Linux kernel. This
includes omiƫng ŇoaƟng point data types and operaƟons, omiƫng support for threads, eliminaƟng
ÝØ½ite’s Įle ®/Ê acƟvity, and subsƟtuƟng user-space library funcƟon calls with the corresponding ones
available to kernel code.

FloaƟng point support and thread support for ÝØ½ite can be controlled through compile Ňags. File
®/Ê is unnecessary since Öi�Ê Ø½ stores nothing. ÝØ½ite’s in-memory mode alleviates this complexity
except for the journaling mechanism, which can be turned oī with a pragma query following the es-
tablishment of a database connecƟon. ÝØ½ite’s Ňexible conĮguraƟon removed signiĮcant roadblocks
with minimal eīort.

The � library faciliƟes available within the Linux kernel are spartan. Some user space library func-
Ɵon calls are matched through a macro deĮniƟon to implemented kernel funcƟons. This is the case
for the memory allocaƟon rouƟnes. A few other library funcƟon calls are subsƟtuted with dummy
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macro deĮniƟons and a couple are implemented in a straighƞorward manner by combining kernel
funcƟons.

A Unix kernel running Öi�Ê Ø½ supports dynamic analysis of accessible data structures with the
following features.

ÝØ½ Ý�½��ã queries Queries conform to the ÝØ½92 standard [DD97].

Type safety Queries perform checks to ensure data structure types are used in a safe manner.

Transparent consistency Queries can provide a consistent view of the kernel’s state transparently,
that is, without needing to protect data structure accesses with synchronizaƟon primiƟves.

No instrumentaƟon Öi�Ê Ø½ does not aīect the execuƟon of kernel code, because it does not require
its modiĮcaƟon.

No Įxed overhead Pi�Ê Ø½’s presence in the Unix kernel does not aīect system performance. Sec-
Ɵon 5.2.3 presents a quanƟtaƟve evaluaƟon of Öi�Ê Ø½’s performance impact on kernel opera-
Ɵon during query execuƟon.

RelaƟonal views To reuse queries eĸciently and store important queries, standard relaƟonal non-
materialized views can be deĮned in the Öi�Ê Ø½ Domain SpeciĮc Language (�Ý½).

4.7.1 Query interfaces

Our kernel module uses the /proc Įle system for receiving queries and communicaƟng query result
sets. A high level interface that runs in user space is also available. Security is handled by implement-
ing /proc callback funcƟons that provide access control and synchronizaƟon is achieved by execuƟng
a query alone across the system’s �Öçs.

4.7.2 Security

Overall, there are three dimensions to Öi�Ê Ø½’s security, ConĮdenƟality, Integrity, and Availability
(�®�) [Bis04]. Öi�Ê Ø½ does not aīect integrity since it does not provide create, update, and delete
queries. Öi�Ê Ø½’s implementaƟon ensures that data structures can only be read since callback func-
Ɵon implementaƟons formodifying queries (®ÄÝ�Ùã, çÖ��ã�, ��½�ã�, �ÙÊÖ) returnwith an error. ÝØ½ite
does not support �½ã�Ù table queries for virtual tables and Öi�Ê Ø½ blocks �Ù��ã� virtual table queries
from the user interface.

Concerning conĮdenƟality, the kernel provides faciliƟes for securing a module’s use and access.
First, loading and unloading a kernel module requires elevated privileges. Second, the /proc Įle
system, Öi�Ê Ø½’s interface, provides an �Ö® for specifying Įle access permissions.

Our access control security policy covers interface access control and kernel access control, that
is, access from other kernel modules. The mechanism we provide to restrict access to the kernel is
based on the ownership of the /proc Įle. This should be conĮgured to belong to a user or group
with elevated privileges, who will be allowed to execute Öi�Ê Ø½ queries. When creaƟng the Öi�Ê Ø½
/proc entry with create_proc_entry() we specify the Įle’s access permissions for granƟng access
to the owner and the owner’s group. AddiƟonally, the /proc interface provides a number of callback
funcƟons for manipulaƟng an entry’s behavior. Kernel modules communicate with each other and
with the kernel leveraging exported symbols, that is, funcƟons and variables. Öi�Ê Ø½ exports none,
thus no other module can exploit Öi�Ê Ø½’s symbols.

AƩacks to Öi�Ê Ø½’s availability can take two forms. Buīer overŇows would allow arbitrary code
execuƟon but this is not evitable since we do not use any of the vulnerable funcƟons to read user
queries into our module. Even if we did, our module accepts and evaluates ÝØ½ queries only. Another
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possible aƩack is to issue a query that engages in an inĮnite loop, however the available ÝØ½ dialect
does not provide this vector.

4.7.3 Synchronized access to kernel data structures

In this work we are parƟcularly interested in obtaining read access to data structures while they are
in a correct state. This is the meaning we give to synchronized access. Ensuring synchronized ac-
cess to kernel data structures is an important requirement for our work. In what follows we deĮne
consistency in the context of Öi�Ê Ø½ and describe how we treat synchronizaƟon. Finally, we discuss
limitaƟons of our work regarding synchronizaƟon and consistency.

4.7.3.1 DeĮniƟon of consistency

We deĮne consistency as the guarantee that all data structures referenced in a query do not change
state during query evaluaƟon. Consequently, our deĮniƟon refers to a part of the kernel’s current
state for speciĮc data structures. Synchronized access is a requirement for achieving consistency. It
allows obtaining a kernel view in a safe manner because the kernel is at a correct state. Consistency
adds that a query result should mirror a view of the system’s current state. This capability supports
important applicaƟons, such as the veriĮcaƟon of invariants.

Consistency requires that a kernel state view is extracted while the referenced data structures are
in the same consistent state as if by acquiring exclusive read access to them atomically, for the whole
query evaluaƟon period.

4.7.3.2 SynchronizaƟon in Öi�Ê Ø½

Pi�Ê Ø½ provides consistent results transparently for data structures protected in criƟcal secƟons pro-
vided these secƟons are not allowed to block. We discuss this limitaƟon in SecƟon 4.7.3.3. Trans-
parently means that a query does not need to protect data structure accesses with synchronizaƟon.
Pi�ÊØ½ achieves transparent consistency by leveraging an exisƟngmechanism, called stop_machine(),3

of the Linux kernel, which allows a user-deĮned funcƟon to execute alone across the system’s �Öçs.
This mechanism takes the query execuƟon funcƟon as an argument and executes it with preemp-
Ɵon and interrupts disabled while the remaining �Öçs of the system are occupied by an idle thread.
EssenƟally, the funcƟon executes in a non-blocking isolated seƫng unƟl it Įnishes.

Our approach relieves relaƟonal interface designers of the Öi�Ê Ø½ Linux kernel interface from the
burden of specifying locks and the order of lock acquisiƟons because the execuƟon seƫngmakes the
necessary arrangements. Having worked with previous versions of Öi�Ê Ø½ that relied on holding and
releasing locks for each virtual table we aƩest that this can be very diĸcult to get right in non-trivial
cases, e.g., when data structures protected through blocking synchronizaƟon primiƟves are combined
in a query. That said, this approach is much heavier than the actual locking requirements of a query
since it is equivalent to holding every spinlock in the kernel. The performance related implicaƟons
are explored in SecƟon 5.2.3.

4.7.3.3 LimitaƟons

Our approach does not work when a thread is allowed to block in a criƟcal secƟon, for instance by
sleeping orwaiƟng for an ®/Ê operaƟon. Although this is not allowedwhen using spinlocks in the Linux
kernel, it is possible e.g., with semaphores. Semaphores allow a thread (including all other types of
contexts in the Linux kernel) to leave the processor while in a criƟcal secƟon. In this case, a querymay
result in an inconsistent view. In addiƟon, if a thread is blocked in a criƟcal secƟon, a query may result

3 include/linux/stop_machine.h



56 / 121 4.7. LOADABLE MODULE IMPLEMENTATION FOR THE LINUX KERNEL

in deadlock if it calls kernel code that uses the same semaphore, directly or indirectly. Note that this
is no worse than our previous approach before adopƟng stop_machine() [FSLB14] that required the
queries to use proper synchronizaƟon. In summary, our approach works with all types of spinlocks
and read-copy-update and parƟally with semaphores. Currently the Öi�Ê Ø½ kernel interface does not
reference kernel data structures protected through semaphores and does not invoke kernel code that
uses semaphores so that all possible queries run normally.

Weare currently examining possibiliƟes for providing consistency transparentlywhen kernel threads
block in criƟcal secƟons, but a good soluƟon to this problem is not obvious. With the introducƟon of
the stop_machine interface, synchronizaƟon is provided by the environment. It’s important that the
soluƟon to the problem of supporƟng blocking synchronizaƟon primiƟves preserves this advantage.
The candidate soluƟon considered so far is to hold and release locks for data structures protected
by blocking synchronizaƟon primiƟves. However, this soluƟon drives us back to our previous design
with explicit statements for handling synchronizaƟon provided through the çÝ®Ä¦ ½Ê�» clause of the
Öi�Ê Ø½ �Ý½. In addiƟon, this soluƟon does not address indirect references to blocking synchronizaƟon
primiƟves contained in kernel code that may be called in the course of a query.

Given that when Öi�Ê Ø½ queries are executed all other pointers are outside criƟcal secƟons, any
pointers used by Öi�Ê Ø½ should have valid values. However, to provide addiƟonal protecƟon for
pointers manipulated outside criƟcal secƟons, e.g., in case of kernel bugs and erroneous virtual table
deĮniƟons, Öi�Ê Ø½ checks pointers using the virt_addr_valid() kernel funcƟon before they are deref-
erenced to ensure they fall within some mapped range of page areas. Invalid pointers show up in the
result set as ®Äò�½®�_Ö. This protecƟon measure is not perfect; pointer errors can sƟll cause a kernel
crash or wrong query results via, e.g., mapped but incorrect pointers.

4.7.4 Reliability

To validate the robustness of our implementaƟon we used regression tesƟng and the Linux Test
Project [LTP14]. ½ãÖ contains an extensive suite of tests for the Linux kernel and related features.
As regression tesƟng dictates, Įrst we executed the ½ãÖ tests on the system when Öi�Ê Ø½ was not
loaded and gathered the results. A total of 1410 tests completed aŌer more than 10 hours of opera-
Ɵon; ½ãÖ reported 53 failed tests. Then, we executed the tests again having a set of 26 Öi�Ê Ø½ queries
Įre non-stop. The two ½ãÖ reports were alike, that is, Öi�Ê Ø½ did not introduce any side-eīects to
the system. In addiƟon, the kernel’s runƟme lock validator [I. 14], which was acƟve during the tesƟng
period, did not issue any complaints. Finally, Öi�Ê Ø½ sustained out of memory errors gracefully.

4.7.5 Deployment and maintenance

Pi�Ê Ø½, similar to any loadable kernel module that is not built into the kernel, requires recompilaƟon
and reloading with each freshly installed version of the Linux kernel. The process is simple:

sudo make && insmod4 picoQL.ko

Maintaining the Öi�Ê Ø½ kernel module in sync with kernel updates requires modifying Öi�Ê Ø½’s
virtual relaƟonal schema through the Öi�Ê Ø½ �Ý½, not the kernel module’s source code. A number
of cases where the kernel violates the assumpƟons encoded in a struct view will be caught by the �
compiler, e.g., data structure Įeld renaming or removal.

Maintenance costs comprise adding �-like macro condiƟons in parts of the �Ý½ data structure
speciĮcaƟons that diīer across kernel versions (LisƟng 4.5). Themacros reference the kernel’s version
where the data structure’s deĮniƟon diīers. Then they are interpreted by the �Ý½ compiler, which
generates code according to the underlying kernel version and the kernel version tag it sees on the
macro. Thus, the cost of evolving Öi�Ê Ø½ as the kernel changes over Ɵme is minimized.

4 insmod is the Linux kernel’s facility for dynamic loading of kernel modules.
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LisƟng 4.5: C-like macro condiƟon conĮgures the relaƟonal interface according to the underlying ker-
nel version.
# if
KERNEL_VERSION > 2.6.32 pinned_vm BIGINT FROM pinned_vm,
#endif

4.7.6 Portability

Öi�Ê Ø½ requires a kernel’s extensibility, processing monopolisaƟon, and a way to communicate with
user space. Manymodern operaƟng system kernels provide kernelmodules, like çÄ®ø’s variants Linux,
Solaris, Darwin, and Free�Ý�, andMicrosoŌWindows. ProcessingmonopolisaƟon, that is code execu-
Ɵon in only one of the system’s �Öçs at one Ɵme, is useful for performing tasks like garbage collecƟon
and system suspension in a clean fashion. Linux, for instance, employs the stop_machine() family
of funcƟons for this cause. Free�Ý� implements the stop_all_proc() funcƟon, which stops all pro-
cesses and thread_single(struct proc *p, int mode), which allows the single-threaded execu-
Ɵon of a process p across the system if mode is Ý®Ä¦½�_�½½ÖÙÊ�. Although modern operaƟng systems
provide features, such as hibernaƟon, it is diĸcult to say how closed source operaƟng systems like
Windows and MacÊÝø implement them.

Kernels provide interfaces that loadable modules can use to collect input and publish output. A
popular interface for Linux, Solaris and Free�Ý� is the /proc interface. Darwin modules can interact
with the outside world as pseudo-devices using for instance /dev/random. In a similar manner Win-
dows modules register input/output callback funcƟons among others and can reserve a place in the
device stack. ApplicaƟons communicate with them through standard Įle ®/Ê system calls.

4.8 ImplementaƟon for the Valgrind framework

Themain challenge in producing aworking implementaƟon is Įƫng ÝØ½ite to the Valgrind framework.
This included omiƫng support for threads, eliminaƟng ÝØ½ite’s Įle ®/Ê acƟvity, and subsƟtuƟng stan-
dard library funcƟon calls with corresponding ones implemented by Valgrind.

Thread support for ÝØ½ite can be easily controlled through compile Ňags. File ®/Ê is unnecessary
since Öi�Ê Ø½ only stores the virtual table schema. ÝØ½ite’s in-memorymode alleviates this complexity
except for the journaling mechanism, which can be turned oī with a pragma query following the es-
tablishment of a database connecƟon. Thankfully, ÝØ½ite’s Ňexible conĮguraƟon removed signiĮcant
roadblocks with minimal eīort.

The � library faciliƟes available within Valgrind are oŌen customised. We matched some user
space library funcƟon calls through a macro deĮniƟon to implemented Valgrind funcƟons. This is the
case for thememory allocaƟon rouƟnes. We subsƟtuted a fewother library funcƟon callswith dummy
macro deĮniƟons and implemented a couple of required funcƟons by combining Valgrind funcƟons.



Chapter 5

Empirical ValidaƟon

We use Öi�Ê Ø½ [FSL16] in three applicaƟon domains [FSL15] and two system seƫngs [FSLB14, FSL19].
Concerning the applicaƟon domains (SecƟon 5.1), QLandKarte is a ¦®Ý applicaƟon that visualises ¦ÖÝ
data, such as bike or running routes. The second one, Stellarium, is a virtual real Ɵme observatory of
stellar objects. Finally, CScout [Spi10a] is a source code analyser and refactoring browser for collec-
Ɵons of � applicaƟons. Within systems, Öi�Ê Ø½ serves as an ad-hoc diagnosƟc tool with a high-level
programming language. We test its capabiliƟes within the Linux kernel (SecƟon 5.2) and the Valgrind
instrumentaƟon framework (SecƟon 5.3).

5.1 Data analysis of C++ applicaƟons

We evaluate Öi�Ê Ø½ within three �++ applicaƟons based on the goal-quesƟon-metric method. We
present themethod (SecƟon5.1.1), the applicaƟons (SecƟon 5.1.2), themeasurements (SecƟon5.1.3),
and the outcomes (SecƟon 5.1.4).

5.1.1 Method

Pi�Ê Ø½’s evaluaƟon follows the Goal-QuesƟon-Metrics approach [BCR94]. The evaluaƟon’s goal is
to show how the current work compares to alternaƟves with respect to three important properƟes
of query systems: programming language expressiveness, temporal eĸciency, and spaƟal eĸciency.
Hence, three quesƟons will drive the answers required to achieve the goal:

1. How does the current work compare to alternaƟves in terms of expressiveness?

2. How does the current work compare to alternaƟves in terms of runƟme temporal eĸciency?

3. How does the current work compare to alternaƟves in terms of runƟme spaƟal eĸciency?

Finally, the selectedmetrics consist of:

lines of code for measuring expressiveness

�Öç Ɵme in seconds for measuring temporal eĸciency.

storage space required to store the data inmemory during execuƟon formeasuring spaƟal eĸciency.

The properƟes menƟoned are necessary and suĸcient for drawing evaluaƟon conclusions. Ex-
pressiveness marks a user’s eīort in wriƟng queries; temporal eĸciency quanƟĮes query perfor-
mance; spaƟal eĸciencymeasuresmemory consumpƟon in query processing. Memory consumpƟon
can potenƟally create problems in the face of large data sets or limited memory space.

58
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Table 5.1: Projects used in evaluaƟon

Project DescripƟon and URL Container Number of measure-
ments

Type Size
Stellarium Stellarium is a popular open source virtual

real Ɵme observatory of stellar objects. It
presents a realisƟc 3� sky view through its
user-driven ¦ç®.
http://www.stellarium.org/

Ýã½, Øt 100 (small) 100 runs

QLandKarte QLandKarte is an open source ¦®Ý applica-
Ɵon that displays ¦ÖÝ data on a variety of
maps.
http://www.qlandkarte.org/

Øt associa-
Ɵve

4K
(medium)

10 runs

�Ýcout �Ýcout [Spi10a] is a source code analyzer and
refactoring browser for collecƟons of � pro-
grams.
http://www.spinellis.gr/cscout/

Ýã½ 1.1M
(large)

5 runs

5.1.2 Use cases

Öi�Ê Ø½ has been evaluated on three large �++ projects, Stellarium, QLandKarte, and �Ýcout (see Ta-
ble 5.1). The instrumented containers are part of the standard Ýã½ library and the Øt framework.1 The
Øt framework provides a data model and opƟmized containers for ¦ç® visualizaƟon.

SØ½ queries in Stellarium’s use case concern planets andmeteors stored in container classes of the
Qt framework to easemanagement of the graphical aspects of the elements. Each container contains
approximately 100 elements. The query interface for the Stellarium applicaƟon is a nice companion
for the ¦ç® since it allows users to spot stellar objects on screen using an object’s posiƟon, which
is modelled as a 3� vector. For many stellar objects the ¦ç® draws no markers or labels due to the
former’s small size.

SØ½ queries in QLandkarte’s use case concern waypoints of four thousand data elements stored
in associaƟve Øt framework containers. The query interface in QLandkarte allows users to analyze
training data, such as heart rate and pace, as well as geographical characterisƟcs, such as azimuth
and alƟtude, collected by ¦ÖÝ tracking devices.

To ensure synchronized access to data we introduce mutex locks in the QLandkarte applicaƟon’s
source code, which control access to the track, track waypoint, and map waypoint containers. This
eīort amounts to a handful lines of code and took a fewminutes for each container. For the Stellarium
and CScout applicaƟons we use Öi�Ê Ø½ single-threaded seƫng and occasionally poll for queries.

CScout can processworkspaces ofmulƟple projects (we deĮne a project as a collecƟon of C source
Įles that are linked together) mapping the complexity introduced by the � preprocessor back into
the original � source code Įles. CÝcout can dump all idenƟĮers of a C programming project’s enƟre
workspace with their relaƟonships in the form of an ÝØ½ script containing the schema and data for
the corresponding workspace. This script can then be uploaded into a relaƟonal database for fur-
ther querying and processing. Öi�Ê Ø½ provides an ÝØ½ query interface to �Ýcout’s containers, which
can be permanently stored in serialised format. This approach saves data import Ɵme compared to
a database alternaƟve. In this case study we use Öi�Ê Ø½, �++, and MyÝØ½ to perform sophisƟcated
queries on the extracted idenƟĮers, Įles, funcƟons, and funcƟon-like macros of the Linux kernel.
MyÝØ½ is used on data dumped by �Ýcout. �Ýcout containers store 1.1 million idenƟĮers and 89 thou-
sand funcƟons and funcƟon-like macros.

The evaluated projects form a good basis for performance evaluaƟon due to their varying con-

1http://qt-project.org/

http://www.stellarium.org/
http://www.qlandkarte.org/
http://www.spinellis.gr/cscout/
http://qt-project.org/
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Planet

+name: String

+axisRotation: double

-radius: double

+period: double

+onScreen: bool

+hasAtmosphere: bool

Meteor

+observDistance: double

+velocity: double

+magnitude: double

+scaleMagnitude: double

+alive: bool

SatellitePlanet

(a) Stellarium: class diagram

N

1

Planet

name TEXT

axisRotation DOUBLE

hasAtmosphere INT

FOREIGN KEY(satellites_id) 

REFERENCES SatellitePlanet

radius DOUBLE

period DOUBLE

onScreen INT

Meteor

velocity DOUBLE

observDistance DOUBLE

magnitude DOUBLE

scaleMagnitude DOUBLE

alive INT

(b) Virtual table schema

Track
+descend: double
+ascend: double
+distance: double
+totalTime: int

+getRectArea(): RectangleArea const
+getTrackPoints(): QList<CTrack::pt_t> const

RectangleArea
+x: int
+y: int
+width: int
+height: int

has-a

N

1

has-a

1

1

TrackWaypoint
+x: int
+y: int
+lon: int
+lat: int
+ele: int
+speed: double
+azimuth: double
+heartrateBPM: int

(c) QLandkarte: class diagram

N1

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

TrackWaypoint_VT

lon INT
lat INT
ele INT

azimuth DOUBLE
speed DOUBLE

heartrateBPM INT

base BIGINT
x INT
y INT

Track_VT

descend DOUBLE
ascend DOUBLE

totalTime INT

FOREIGN KEY(trackWaypoints_set_id)
REFERENCES TrackWaypoint_VT

distance DOUBLE

qrectf_x INT

qrectf_width INT
qrectf_height INT

qrectf_y INT

(d) Virtual table schema

IdentifierProperties

+IdentifierId: int

+EclassisLscope: bool

-EclassisCscope: bool

+EclassisOrdinary: bool

+Identifierxfile: bool

+EclassisReadonly: bool

+EclassisFunction: bool

+Eclassunused: bool

+Eclassmembers: Tokid

Functionmap

+CallName: String

+CallFilereadOnly: bool

+CallFANIN: int

Tokid

+Filepath: String

1

1

(e) CScout: class diagram

1

1

IdentifierProperties

IdentifierId INT

EclassisLscope INT

Identifierxfile INT

FOREIGN KEY(eclassmembers) 

REFERENCES Tokid

EclassisCscope INT

EclassisOrdinary INT

EclassisReadonly INT
Functionmap

CallFilereadOnly INT

CallName TEXT

CallFANIN INT

EclassisFunction INT

Eclassunused INT

Tokid

Filepath TEXT

base BIGINT

(f) Virtual table schema

Figure 5.1: Class diagram and virtual table schema for the Stellarium, QLandkarte, and CScout appli-
caƟons
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tainer sizes and composite data models. With increasing container size the problem size increases.
Thus, queries provide a good measure of Öi�Ê Ø½’s performance and its scalability. They indicate how
gracefully Öi�Ê Ø½ consumes computer resources with respect to the evaluaƟon criteria set, that is
temporal and spaƟal eĸciency. The projects’ composite data models allow for sophisƟcated queries
and, as such, provide a good testbed for measuring expressiveness.

The chosen projects are representaƟve of situaƟons where Öi�Ê Ø½ is most valuable. They carry
out heavy online processing and access data stored as Įles on disk. CÝcout can dump its containers to
a relaƟonal database but Öi�ÊØ½ provides ÝØ½ queries saving data import Ɵme compared to a database
alternaƟve. Overall, these projects store a wealth of informaƟon in main-memory containers, which
can be queried to verify their state or extract knowledge out of the data.

Öi�Ê Ø½ requires some eīort to embed in an applicaƟon— recall SecƟon 4.6. Assuming familiarity
with the applicaƟon, the basic cost involveswriƟng the relaƟonal representaƟon. Figure 5.1 shows the
class diagram and relaƟonal representaƟon of the Stellarium, QLandKarte, and CSCout applicaƟons
respecƟvely. Detailed guidance on embedding Öi�Ê Ø½ in applicaƟons is available online.2

Table 5.2: Use case (UC) idenƟĮers and descripƟons and respecƟve Öi�Ê Ø½ queries for each project
# Project UC descripƟon Öi�Ê Ø½ query

UC1 Stellarium Retrieve meteors that are acƟve at
the moment and their observable dis-
tance from Earth is smaller than any
other planet’s distance from Earth

SELECT observDistance , velocity , magnitude,
scaleMagnitude

FROMMeteor
WHERE alive
AND observDistance <

(SELECT MIN(distance)
FROM Planet
WHERE name NOT LIKE ’Earth’);

UC2 Stellarium Retrieve planets ordered by descend-
ing rotaƟon that are currently on
screen and rotate faster than their
satellite planets

SELECT P.name, P. axisRotaƟon ,
MIN(SP.axisRotaƟon )

FROM Planet AS P
JOIN SatellitePlanet AS SP
ON SP.base = P. satellites_id
WHERE P.onScreen
AND P.axisRotaƟon > SP. axisRotaƟon
GROUP BY P.name
ORDER BY P.axisRotaƟon DESC;

UC3 Stellarium Retrieve planets currently on screen
whose satellites have atmosphere

SELECT P.name, P. radius , P.period , COUNT(*)
FROM Planet AS P
JOIN SatellitePlanet AS SP
ON SP.base = P. satellites_id
WHERE P.onScreen
AND SP.hasAtmosphere
GROUP BY P.name;

UC4 QLandkarte Retrieve track points per azimuth or-
dered by maximum speed

SELECT name, azimuth, max(speed)
FROM Track
JOIN TrackWayPoint
ON TrackWayPoint.base = Track . trackwaypoints_id
GROUP BY azimuth
ORDER BY max(speed);

2https://github.com/mfragkoulis/PiCO_QL/wiki/the-PiCO-QL-C%2C-CPP-app-tutorial

https://github.com/mfragkoulis/PiCO_QL/wiki/the-PiCO-QL-C%2C-CPP-app-tutorial


62 / 121 5.1. DATA ANALYSIS OF C++ APPLICATIONS

Table 5.2: Use case (UC) idenƟĮers and descripƟons and respecƟve Öi�Ê Ø½ queries for each project
# Project UC descripƟon Öi�Ê Ø½ query

UC5 QLandkarte Retrieve track points per heart rate
and elevaƟon having more than 10
km/h average speed ordered by de-
scending maximum speed

SELECT name, HeartRateBpm, ele, max(avgSpeed)
FROM Track
JOIN TrackWayPoint
ON TrackWayPoint.base = Track . trackwaypoints_id
GROUP BY heartRateBpm, ele
HAVING max(avgSpeed) > 0
ORDER BY max(avgSpeed) DESC;

UC6 QLandkarte Retrieve track points and map points
having elevaƟon above 20 meters

SELECT name, lon, lat , ele
FROM Track
JOIN TrackWayPoint
ON TrackWayPoint.base = Track . trackwaypoints_id
WHERE ele > 20
UNION
SELECT name, lon, lat , ele
FROMMapWayPoint
WHERE ele > 20;

UC7 CScout Retrieve local scope, non-class scope,
ordinary, non-read only, non-funcƟon,
used idenƟĮers ordered by id

SELECT IdenƟĮerid
FROM IdenƟĮerProperƟes
WHERE EclassisLscope
AND NOT EclassisCscope
AND EclassisOrdinary
AND NOT IdenƟĮerxĮle
AND NOT EclassisReadonly
AND NOT EclassisFuncƟon
AND NOT Eclassunused
ORDER BY IdenƟĮerid ;

UC8 CScout Retrieve Įle path of local scope, un-
used, non-read only tokens ordered
by Įle path

SELECT DISTINCT Filepath
FROM IdenƟĮerProperƟes
LEFT JOIN Tokid
ON Tokid.BASE = IdenƟĮerProperƟes .Eclassmembers
WHERE EclassisLscope
AND Eclassunused
AND NOT EclassisReadonly
ORDER BY Filepath;

UC9 CScout Retrieve funcƟons that are not called
from read-only Įles and take no argu-
ments ordered by their name

SELECT Callname
FROM FuncƟonmap
WHERE NOT CallFilereadOnly
AND CallFANIN=0
ORDER BY Callname;

5.1.3 PresentaƟon of measurements

Wecompare Öi�ÊØ½ queries to equivalent queries expressed using �++ constructswith respect to lines
of code (½Ê�), �Öç execuƟon Ɵme, and query memory use. For the �Ýcout case, we also carry out the
measurements in aMyÝØ½ databasewith a default conĮguraƟon and enabled indexes. Measurements
of Öi�Ê Ø½ and �++ queries for the Stellarium and QLandkarte took place at another machine,3 under
idenƟcal (mostly idle) load. Each measurement represents the mean value obtained over 10 runs.
Measurements of the Öi�Ê Ø½, �++ and MyÝØ½ queries for the CScout case study took place at the

3Mac ÊÝ ø 10.6.8, 2.4 ¦«z intel Core 2 Duo, 2 ¦� 667 Ã«z ��Ù2 Ý�Ù�Ã
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same machine,4 under (mostly idle) idenƟcal load.
The Öi�Ê Ø½ evaluaƟon queries for the case studies are presented in Table 5.2. We select these

evaluaƟon queries on two grounds: (a) to show how Öi�Ê Ø½ can provide meaningful data extracƟon,
and (b) to achieve coverage of ÝØ½’s operators, which is important for the evaluaƟon. EvaluaƟon
queries include nested subquery, ¦ÙÊçÖ �ù, «�ò®Ä¦, ÊÙ��Ù �ù, join, and set operaƟons.

The Öi�Ê Ø½ �Ý½, �++ and the MyÝØ½ queries are available online5,6,7 except for �Ýcout’s �++
queries, which are embedded in �Ýout’s plain query facility and are reproducible from �Ýcout’s ¦ç®
interface.

5.1.3.1 LOC measurements

Depending on the programming language, there are a number of ways to count lines of code. In
fact, there is no standard way to count ½Ê� for ÝØ½ queries. To compare ½Ê� between ÝØ½ and �++
queries in an equitable manner, we use logical ½Ê� for �++, which measures executable statements,
and decompose an ÝØ½ query in lines, each line starƟng with a language keyword as can be seen in
Table 5.2. How ½Ê� for �++ are measured is presented in Appendix A.1 where x in comments denotes
that the corresponding lines have not been accounted for the program’s lines-of-code metric.

The code query size is listed in Table 5.3. The cost of supplying a relaƟonal representaƟon for
querying the applicaƟon’s data structures is accounted separately from Öi�Ê Ø½ measurements. It is
located next to each applicaƟon’s name in the table header inside parentheses because it is a one-
oī cost amorƟzed over use. CÝcout contains three interfaces for performing queries on processed
idenƟĮers, Įles, and funcƟons. The measurements amount to the �++ code used for calculaƟng each
of the three evaluaƟon queries. The code does not include the generic code base shared by all three
interfaces (203 ½Ê�) and the presentaƟon layer.

5.1.3.2 CPU execuƟon Ɵme measurements

In calculaƟng �Öç execuƟon Ɵme (Table 5.3) we use the � Ɵme library funcƟon in Öi�Ê Ø½ and �++
queries and the Ɵme reported aŌer each query for MyÝØ½ queries. MyÝØ½ Ɵme measurements are
carried out with cold cache and exclude data import Ɵme.

The implementaƟons of �++ queries in Stellarium and QLandKarte case studies leverage appro-
priate containers and algorithms where available. SpeciĮcally, we manage groupings in �++ using an
associaƟve container, such as a map. An addiƟonal group-by term requires an addiƟonal container em-
bedded in the Įrst. A multimap is convenient for accommodaƟng a second group-by term, because it
is ordered and provides the opportunity to group values of the second term for which the Įrst term
has the same value. We then use the Ýã½ library’s equal_range algorithm to manage groups in the
mulƟmap. These containers are heavily used in evaluaƟon queries along with provided algorithms.
EvaluaƟon queries do not make use of �++11 features, such as lambda funcƟons.

5.1.3.3 Query memory use measurements

For calculaƟngmemory space during query processing (Table 5.3) we use the ltrace library call tracing
program for Öi�Ê Ø½ and �++ queries in �Ýcout under Linux, the maximum resident set size reported
by the ¦Äç Ɵme uƟlity for MyÝØ½ queries, and themaximum resident set size reported by ¦Äç rusage
in Stellarium and QLandKarte tested under Mac ÊÝ ø. Each MyÝØ½ query run took place on a freshly
started database server without cleaning the machine’s buīer cache; each measurement represents

4Linux 2.6.32-5-amd64, 4 Dual Core AMD Opteron(tm) Processor 880 �Öçs, 16 ¦� Ù�Ã
5 https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/Cscout
6 https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/QLandKarte
7 https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/Stellarium
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Table 5.3: Query evaluaƟon measurements

Case Stellarium (25) QLandkarte (24) CScout (32)
LisƟng UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9
LOC measurements
Öi�Ê Ø½ 7 8 7 6 7 9 10 8 5
�++ 14 22 20 37 49 23 425 425 433
ÃyÝØ½ Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� 17 13 7
CPU execuƟon Ɵme
Öi�Ê Ø½ 749µs 1538µs 1020µs 74ms 68ms 45ms 2190ms 2220ms 270ms
�++ 363µs 774µs 739µs 54ms 31ms 14ms 1070ms 1010ms 260ms
ÃyÝØ½ Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� 123.30s 3950ms 570ms
Query memory use
Öi�Ê Ø½ 61kB 59kB 41kB 171kB 167kB 166kB 12kB 102kB 6161kB
�++ 4kB 12kB 49kB 90kB 90kB 72kB 7kB 6kB 6kB
ÃyÝØ½ Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� 320kB 364kB 7155kB
Marginal query code size
Öi�Ê Ø½ 234kB 234kB 234kB 201kB 201kB 201kB 941kB 941kB 941kB
�++ 47kB 61kB 34kB 19kB 36kB 32kB Ä/� Ä/� Ä/�
ÃyÝØ½ Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� Ä/� Ä/�

the observed peak resident set size at the database client. Similarly, to get a reliable measurement of
the peak resident set size from ¦Äç Ɵme and ¦Äç resource usage we restarted the applicaƟon aŌer
each run.

5.1.4 Results

Pi�Ê Ø½ reduces the amount of code required for expressing a data analysis operaƟon and even seems
to have enhanced expressive power compared to the ÝØ½ statements used for querying the MyÝØ½
database. Each line in a Öi�Ê Ø½ query corresponds to four lines of �++ code on average. ¦ÙÊçÖ �ù
clauses cause a signiĮcant fracƟon of this expressiveness gap; ½Ê� raƟo explodes to 6:1 for ¦ÙÊçÖ �ù
queries (ç�4, ç�5). Notably, �++ data type deĮniƟons account for 1/4 of the overall expressiveness
gap.

The diīerence, in favour of Öi�Ê Ø½, that we observe between Öi�Ê Ø½ and MyÝØ½ queries is ex-
plained by the reduced normalizaƟon opted for in Öi�Ê Ø½ queries. SpeciĮcally, we have chosen to
model 1:1 associaƟons in the same virtual table (recall secƟon 3.1.1 for further explanaƟon of Öi�Ê Ø½
modelling), whereas in a typical relaƟonal schema there would be a table for each enƟty parƟcipaƟng
in the associaƟon and a primary key / foreign key relaƟonship instance to accommodate the associa-
Ɵon. As a result, each Öi�Ê Ø½ evaluaƟon query saves two joins or four ½Ê� on average.

CÖç execuƟon Ɵmemeasurements show that querying using �++ programming constructs is gen-
erally more eĸcient, but Öi�Ê Ø½ performance scales as well as �++ code with increasing data sizes.
C++ is twice as fast as Öi�Ê Ø½ on average regardless of a query’s operaƟons. MyÝØ½ with indexes
enabled is eĸcient but for some operaƟons object-oriented query processing with Öi�Ê Ø½ is much
faster (ç�7). This stems from the way Öi�Ê Ø½ is overlaid on the �Ýcout data model. In the last two
�Ýcout evaluaƟon queries, Öi�Ê Ø½ is twice as fast as MyÝØ½ capitalizing on its in-memory operaƟon
and naƟve query processing against applicaƟon data structures.

Öi�Ê Ø½ is slightly outperformed by the �++ query implementaƟon for the query presented in ç�9.
Because the corresponding query returns a large result set (> 20000 records), a possible explanaƟon
is that Öi�Ê Ø½ closes the performance gap by leveraging database result set presentaƟon techniques.

Query memory use measurements show that MyÝØ½ queries consume most memory and �++
queries consumeminimum space for simple cases. Pi�Ê Ø½ stands in between having a modest mem-
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Figure 5.2: Linux kernel models

ory footprint.
In sum, ourmeasurements show that the use of Öi�ÊØ½ is pracƟcal in termsof temporal and spaƟal

eĸciency. Öi�Ê Ø½’s query execuƟon Ɵme scales well with increasing data input; comparably to �++
code. Besides interacƟvity, Öi�Ê Ø½ provides a compeƟƟve soluƟon with respect to the properƟes
examined in the evaluaƟon.

Marginal query code size is considerably larger for Öi�Ê Ø½ compared to each �++ query but this
is actually the space for the library as a whole. The cost is amorƟzed over an arbitrary number of
queries.

5.2 DiagnosƟcs in the Linux kernel

We evaluate Öi�Ê Ø½ within the Linux kernel for diagnosing issues with its operaƟon [FSLB14]. We
present the method (SecƟon 5.3.1), the use cases (SecƟon 5.2.2), the measurements (SecƟon 5.2.3),
and the outcomes (SecƟon 5.3.4).

5.2.1 Method

Öi�Ê Ø½’s evaluaƟon in the Linux kernel involves two axes of analysis, use cases (SecƟon 5.2.2) and
quanƟtaƟve (SecƟon 5.2.3). Use cases examine how Öi�Ê Ø½ can aid system diagnosƟcs. Figure 5.2
presents a part of the data structure model and the respecƟve relaƟonal representaƟon. The quan-
ƟtaƟve evaluaƟon presents the execuƟon cost for a variety of queries with diverse computaƟon re-
quirements and the overhead of execuƟng queries to user processes.

5.2.2 Use cases

The following use cases demonstrate how Öi�Ê Ø½ can be used to aid system diagnosƟcs acƟviƟes in
three areas: operaƟon integrity, security audits, and performance evaluaƟon.

5.2.2.1 OperaƟon integrity

Pi�Ê Ø½ aids operaƟon stability and data retrieval by providing a high level ÝØ½ interface to query the
live state of data structures at arbitrary Ɵmes and idenƟfy possible problems and deĮciencies. The
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Linux kernel bug tracking system8 hosts an extensive list of bugs. The two use cases ç�1 and ç�2
referenced in Table 5.4 are associated with bugs that come from that list.

Table 5.4: Use case (UC) idenƟĮers and descripƟons and respecƟve Öi�Ê Ø½ queries
# UC descripƟon Öi�Ê Ø½ query
UC1 Child process dies due to

kill signal that did not orig-
inate from its parent process.
[https://bugzilla.kernel.org/
show_bug.cgi?id=43300]

SELECT P.name, P.pid , P. state , EP.name, EP.pid , EP. state
FROM Process_VT AS P
JOIN EProcess_VT AS EP
ON EP.base=P.parent_id
WHERE P.pdeath_signal = 9
AND EP.pdeath_signal = 0
AND EP. exit_state = 0;

UC2 Aggregate thread ®/Ê staƟsƟcs in
parent. [https://bugzilla.kernel.
org/show_bug.cgi?id=10702]

SELECT P.name, P.pid , P. tgid , PIO. read_bytes_syscall ,
PIO. write_bytes_syscall ,
SUM(ETIO.read_bytes_syscall ), SUM(ETIO.write_bytes_syscall ),
PIO. read_bytes_syscall + SUM(ETIO.read_bytes_syscall ),
PIO. write_bytes_syscall + SUM(ETIO.write_bytes_syscall )

FROM Process_VT AS P
JOIN EIO_VT AS PIO
ON PIO.base=P.io_id
JOIN EThread_VT AS ET
ON ET.base=P.thread_group_id
JOIN EIO_VT AS ETIO
ON ETIO.base=ET.io_id
GROUP BY ET.tgid;

UC3 IdenƟfy normal users who execute
processes with root privileges and
do not belong to the admin or sudo
groups.

SELECT PG.name, PG.cred_uid, PG.ecred_euid,
PG.ecred_egid, G.gid

FROM (
SELECT name, cred_uid, ecred_euid,

ecred_egid, group_set_id
FROM Process_VT AS P
WHERE NOT EXISTS (

SELECT gid
FROM EGroup_VT
WHERE EGroup_VT.base = P.group_set_id
AND gid IN (4,27))

) PG
JOIN EGroup_VT AS G
ON G.base=PG.group_set_id
WHERE PG.cred_uid > 0
AND PG.ecred_euid = 0;

8 https://bugzilla.kernel.org

https://bugzilla.kernel.org/show_bug.cgi?id=43300
https://bugzilla.kernel.org/show_bug.cgi?id=43300
https://bugzilla.kernel.org/show_bug.cgi?id=10702
https://bugzilla.kernel.org/show_bug.cgi?id=10702
https://bugzilla.kernel.org
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Table 5.4: Use case (UC) idenƟĮers and descripƟons and respecƟve Öi�Ê Ø½ queries
# UC descripƟon Öi�Ê Ø½ query
UC4 IdenƟfy Įles open for reading by pro-

cesses that do not currently have cor-
responding read access permissions.

SELECT DISTINCT P.name, F.inode_name, F.inode_mode&400,
F. inode_mode&40, F.inode_mode&4

FROM Process_VT AS P
JOIN EFile_VT AS F
ON F.base=P. fs_fd_Įle_id
WHERE F.fmode&1
AND (F.fowner_euid != P. ecred_fsuid
OR NOT F.inode_mode&400)

AND (F. fcred_egid NOT IN (
SELECT gid
FROM EGRoup_VT AS G
WHERE G.base = P.group_set_id)

OR NOT F.inode_mode&40)
AND NOT F.inode_mode&4;

UC5 Retrieve executable program binary
formats not used by any processes.

SELECT load_bin_addr, load_shlib_addr , core_dump_addr
FROM BinaryFormats_VT
WHERE load_bin_addr NOT IN (
SELECT load_bin_addr
FROM Process_VT
JOIN ProcessBinaryFormat_VT
ON base = binfmt_id );

UC6 Return the current privilege level of
each »òÃ virtual online �Öç and
whether it is allowed to execute hy-
percalls.

SELECT cpu, vcpu_id, vcpu_mode, vcpu_requests,
current_privilege_level , hypercalls_allowed

FROM KVM_VCPU_View;

UC7 Return the contents of the Ö®ã channel
state array.

SELECT status_latched , status , mode, bcd, gate , count_load_Ɵme,
count_latched

FROM KVM_View AS KVM
JOIN EKVMArchPitChannelState_VT AS APCS
ON APCS.base=KVM.kvm_pit_state_id;

UC8 Present Įne-grained page cache infor-
maƟon per Įle for »òÃ related pro-
cesses.

SELECT name, inode_name, Įle_oīset , page_oīset , inode_size_bytes ,
pages_in_cache, inode_size_pages , pages_in_cache_conƟg_start ,
pages_in_cache_conƟg_current_oīset , pages_in_cache_tag_dirty ,
pages_in_cache_tag_writeback, pages_in_cache_tag_towrite ,

FROM Process_VT AS P
JOIN EFile_VT AS F
ON F.base=P. fs_fd_Įle_id
WHERE pages_in_cache_tag_dirty
AND name LIKE ‘%kvm%’;

UC9 Present a view of socket Įles’ state. SELECT name, pid, gid , uƟme, sƟme, total_vm, nr_ptes , inode_name,
inode_no, rem_ip, rem_port, local_ip , local_port , tx_queue,
rx_queue

FROM Process_VT AS P
JOIN EVirtualMem_VT AS VM
ON VM.base = P.vm_id
JOIN EFile_VT AS F
ON F.base = P. fs_fd_Įle_id
JOIN ESocket_VT AS SKT
ON SKT.base = F. socket_id
JOIN ESock_VT AS SK
ON SK.base = SKT.sock_id
WHERE proto_name LIKE ‘tcp’;



68 / 121 5.2. DIAGNOSTICS IN THE LINUX KERNEL

The Įrst query, ç�1, Įnds child processes terminated due to a kill signal that did not originate from
their parent process; child processes should follow their parent process’s terminaƟon. The kernel’s
built-in tool infrastructure (/proc, top, ps) does not associate parent processes to children processes
in order to reason about their state and idenƟfy this bug. Even if it did, the beneĮt of Öi�Ê Ø½ is that it
provides a high-level language to express readable analysis tasks. SpeciĮcally, the query constraints
mirror the bug’s characterisƟcs while the Ý�½��ã clause, especially column state, reŇects the bug’s
outcome. With the use of relaƟonal views, as exempliĮed in Figure 3.10, query programming eīort
can shrink signiĮcantly.

The second query, ç�2, accumulates thread ®/Ê in the parent process, a view that has only recently
been oīered by the kernel’s uƟliƟes under the /proc Įle system. The /proc interface9 supplies such
staƟsƟcs but had failed to accumulate thread ®/Ê in the parent process due to a design oversight. At
the Ɵme of this wriƟng accumulated thread ®/Ê without taking into account the parent’s ®/Ê is not
readily available from the /proc interface, and informaƟon is provided exclusively for each process.
This example highlights Öi�Ê Ø½’s ability to combine bits of informaƟon in powerful ways in order
to construct ad-hoc queries that reŇect a user’s objecƟve. One could use scripƟng languages, such
as �ó» and Python for tailoring the output of kernel tools but these are limited to the data made
available by the tools themselves. In addiƟon, Öi�Ê Ø½ supports a single homogeneous interface to
retrieve and analyze kernel data.

5.2.2.2 Security audits

Öi�Ê Ø½ can improve a system’s security by expressing queries that spot suspicious behavior. For ex-
ample, normal users, who do not belong to the admin or sudo groups, should rarely be able to execute
processes with root privileges. The query in ç�3 displays processes that do not obey this rule. This
informaƟon is available through the kernel interface by reading /proc/pid/status, but to achieve
the same objecƟve post-processing is required to extract the desired credenƟal values and express
the constraints on them. An exisƟng alternaƟve for post-processing the provided informaƟon is to
use the �ó» programming language in conjuncƟon with a shell script; see Figures A.11 and A.12 in
Appendix for the respecƟve scripts.

The Öi�Ê Ø½ query presented in ç�3 is more concise and reŇects the purpose of the analysis in
a declaraƟve manner compared to the �ó» script alternaƟve. SpeciĮcally, Öi�Ê Ø½ allows users to
focus on their objecƟve by presenƟng a relaƟonal data model of the kernel and providing a query
language that avoids the use of low-level programming constructs, such as variables and assignments.
DiagnosƟc tasks through Öi�Ê Ø½ hide the implementaƟon details of their execuƟon by leveraging the
capabiliƟes of a high-level declaraƟve interface that is suitable for data management.

Another security requirement is verifying that processes have righƞul access to the Įles they open.
The query in ç�4 reports processes that have a Įle open for readingwithout the necessary read access
permissions. This query returns forty four records for our Linux kernel (Table 5.5). It can idenƟfy Įles
whose access has leaked (unintenƟonally, e.g., through a race condiƟon, or by design) to processes
that have dropped elevated privileges.

The same check can be performed with SystemTap. Figure A.13 in Appendix presents the corre-
sponding SystemTap script. SystemTap allows users to instrument any kernel funcƟon and examine
the kernel’s Ňow of execuƟon based on user-deĮned Įlters. It can also capture the state of a funcƟon’s
internal variables and do user-speciĮed aggregaƟons. In addiƟon, since embedded � is an opƟon and
a SystemTap script is compiled into a loadable kernel module, all of the kernel’s public symbols are
readily usable in scripts. SystemTap’s probes span over the kernel and, as such, achieve instrumenta-
Ɵon coverage.

SystemTap is parƟcularly useful for kernel problems that require the analysis of execuƟon Ňow.

9 accumulated ®/Ê: /proc/pid/io and each thread’s ®/Ê: /proc/pid/task/tid/io
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In terms of access to data and computability, there is nothing that Öi�Ê Ø½ does that SystemTap can-
not do; SystemTap provides the capability of wriƟng embedded � in scripts. But when the objecƟve
requires kernel state examinaƟon rather than event-based analysis Öi�Ê Ø½ provides an advantageous
alternaƟve. Consider the query in ç�4 compared to the SystemTap script in Figure A.13. A Įrst obser-
vaƟon is that the Öi�Ê Ø½ query is more compact because it does not use local variables, assignments,
and print statements. It is also more readable and expressive owing to the query language’s high-
level syntax. A third observaƟon is that to retrieve the desired informaƟon from the kernel through
a SystemTap script either funcƟons wriƩen in embedded � or composite instrumentaƟon, that is,
the acƟvaƟon of mulƟple kernel probes, are oŌen required. Our SystemTap script uses embedded C
funcƟons.

The query and the script may seem computaƟonally equivalent but they are not. The Öi�Ê Ø½
query traverses the accounƟng list of processes and checks a process’s permissions against its open
Įles while the SystemTap script instruments the vfs_read() funcƟon and reports unauthorized access
to Įles by running processes for as long as the script executes. Thus, the SystemTap script only val-
idates what is happening at the Ɵme it executes instead of the accounted state; the script did not
show any unauthorized accesses within a Ɵme window of a few seconds.

Furthermore there is a quality diīerence between Öi�Ê Ø½ queries and SystemTap scripts. Öi�Ê Ø½
examines a consistent funcƟon of the system. The system is in a consistent state when a Öi�Ê Ø½
query starts to execute and it remains in that state unƟl query evaluaƟon completes. SystemTap, on
the other hand, collects data as the system’s state progresses and, thus, does not provide consistent
results. This is further exempliĮed in Figure A.14. The script there records and Įlters the state of
kernel data structures reŇecƟng the Öi�Ê Ø½ query in ç�4. The script is evaluated only once at the
very beginning of the instrumentaƟon, because it only acƟvates the special probe begin, and exits
immediately aŌer its evaluaƟon. The script does not provide a consistent view of the state because
the system’s state is evolving at the same Ɵme the script is execuƟng; exclusive locking, which could
provide consistency, only covers a fracƟon of the kernel’s data. In root-cause analysis it is oŌen useful
to extract data while ensuring that the system state does not change in the interim.

Queries like the above could be used to detect the potenƟal presence of a rootkit by retrieving
details of processes with elevated privileges and unauthorized access to Įles. Advanced rootkits use
dynamic kernel object manipulaƟon aƩacks [PFWA06] tomutate non-control data, that is, kernel data
structures. Baliga et al. [BGI08] present a number of such possible aƩacks, which tamper kernel data
structures.

One aƩack involves adding a malicious binary format in the list of binary formats used by the
kernel to load binary images of processes and shared libraries. A new format is added at the head of
the list of binary formats so when a process is created themalicious handler is the Įrst that is checked
for its appropriateness to load the binary. The malicious code is executed and returns EÄÊ�ø�� error
code. Then the kernel tries the next handler in the list. In ç�5 Öi�Ê Ø½ queries the list of formats
and crosschecks each with the format used by each process in the system. A malicious handler that
implements this aƩack would not match any processes.

Hardware virtualizaƟon environments suīer from vulnerabiliƟes as well [PBSL13]. �ò�-2009-
3290 [Nat09] describes how guest òÃs, operaƟng at Ring 3 level, abuse hyper calls, normally issued
by Ring 0 processes, to cause denial of service or to control a »òÃ host. The ÝØ½ query in ç�6 retrieves
the current privilege level of each online virtual �Öç and its eligibility to execute hypercalls, and dis-
plays òÃs violaƟng hypercalls. This query can be used to detect the possibility of the corresponding
aƩacks.

Perez-Botero et al. [PBSL13] report vulnerabiliƟes in the »òÃ hypervisor due to lack of data struc-
ture state validaƟon (�ò�-2010-0309 [Nat10]). Lack of data validaƟon in the programmable interval
Ɵmer (Ö®ã) data structures allowed a malicious òÃ to drive a full host operaƟng system to crash by at-
tempƟng to read from /dev/port, which should only be used for wriƟng. The Ö®ã channel state array
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Table 5.5: Present ÝØ½ query execuƟon cost for 10 diverse queries.

PICO QL
query

Query label LOC Records
returned

Total
set size
(records)

ExecuƟon
space (»�)

ExecuƟon
Ɵme (ms)

Record
evaluaƟon
Ɵme (µs)

Figure 3.15 RelaƟonal join 10 80 683929 1667.10 231.90 0.34
ç�6 Join – virtual table context

switch (×2)
3(9) 1 827 33.27 1.60 1.94

ç�7 Join – virtual table context
switch (×3)

4(10) 1 827 32.61 1.66 2.01

ç�3 Nested subquery (¥ÙÊÃ,
ó«�Ù�)

13 0 132 27.37 0.25 1.89

ç�4 Nested subquery (ó«�Ù�), ÊÙ
evaluaƟon, bitwise logical op-
eraƟons, �®Ýã®Ä�ã records

13 44 827 3445.89 10.69 12.93

ç�8 Page cache access, string con-
straint evaluaƟon

6 16 827 26.33 0.57 0.69

ç�9 ArithmeƟc operaƟons, string
constraint evaluaƟon

11 0 827 76.11 0.59 0.71

Ý�½��ã 1; Query overhead 1 1 1 18.65 0.05 50.00

mirrors the permiƩed access modes as array indexes; read access is masked to an index that falls out
of bounds and triggers the crash when later dereferenced. The query in ç�7 provides a view of the Ö®ã
channel state array where each tuple in the result set mirrors a permiƩed access mode; read access
is not included. Accessing this informaƟon in the form of a simple ÝØ½ query can help with automaƟc
validaƟon of data structure state during tesƟng and prevent vulnerabiliƟes of this kind.

5.2.2.3 Performance

RegulaƟng system resources is a requirement for system stability. Öi�Ê Ø½ can provide a custom view
of a system’s resources and help discover condiƟons that hinder its performance. The query in ç�8
extracts a view of the page cache detailing per Įle informaƟon for »òÃ related processes. It shows
how eīecƟvely virtual machine ®/Ê requests are serviced by the host page cache assuming that the
guest operaƟng system is execuƟng direct ®/Ê calls.

One of Öi�Ê Ø½’s advantages is its extensible ability to oīer a uniĮed view of informaƟon across
the kernel. The combined use of diagnosƟc tools can point to the soluƟon in most situaƟons, but
for some of those situaƟons, Öi�Ê Ø½ provides the answer without recourse to external tools. For
instance, consider ç�9, which shows how to combine data structures to extract detailed performance
views of and across important kernel subsystems, namely process, �Öç, virtual memory, Įle, and
network. Adding to this list means only expanding the representaƟon of data structures. OperaƟng
system uƟliƟes, such as netstat10 or lsof,11 can also combine data originaƟng from diīerent kernel
subsystems, but their capabiliƟes are not extensible andmanipulaƟng the retrieved data in non-trivial
ways requires post-processing.

5.2.3 PresentaƟon of measurements

Öi�Ê Ø½’s quanƟtaƟve evaluaƟon presents the execuƟon eĸciency of ÝØ½ queries in the Linux kernel
(SecƟon 5.2.3.1) and the performance impact of queries on systemoperaƟon by conducƟng overhead
measurements on an array of macro-benchmarks (SecƟon 5.2.3.2).

10 netstat -p -e
11 lsof -iTCP
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5.2.3.1 Query execuƟon eĸciency

We compute the query execuƟon Ɵme as the diīerence with cycle-accurate precision between two
Ɵmestamps, acquired at the end and at the start of each query respecƟvely. Tests are carried out
in an otherwise idle machine (1¦� Ù�Ã, 500¦� disk, 2 cores) running the Linux kernel (v3.6.10).
The mean of at least three runs is reported for each query.

The rows in Table 5.5 contain querieswith diverse characterisƟcs and columns contain query prop-
erƟes andmeasurement metrics. SpeciĮcally, columns include references to queries presented in the
paper, a label characterizing each query’s execuƟon plan, the lines of ÝØ½ code for expressing each
query, the number of records returned, the total set size evaluated, the execuƟon space and Ɵme,
and the average Ɵme spent for each record.

Table 5.5 indicates the programming eīort for wriƟng some representaƟve queries in terms of
½Ê�. As there is no standard way to count ÝØ½ lines of code, we count logical lines of code, that is,
each line that begins with an ÝØ½ keyword excluding �Ý, which can be omiƩed, and the various ó«�Ù�
clause binary comparison operators. At a minimum, ÝØ½ requires two lines of code to retrieve some
informaƟon (Ý�½��ã...¥ÙÊÃ...;). The Öi�Ê Ø½ evaluaƟon queries listed in Table 5.5 require between six
and thirteen ½Ê�. This is not a small Įgure, but it is a price we pay for sophisƟcated queries, such
as most of those used in our evaluaƟon. Moreover, a large part of this programming cost can be
abstracted away because queries can be composed from other queries leveraging standard relaƟonal
views (Figure 3.10). This is the case with ç�6 and ç�7 whose ½Ê� drop to less than half of the original.
Finally, Ö®�Ê Ø½ provides an advantage of qualitaƟve nature: it allows users to focus on the informaƟon
retrieval aspects of an analysis task. This can not be measured by ½Ê�.

5.2.3.2 Impact on system performance

We study the performance impact of Öi�Ê Ø½ queries Įring at Įxed frequency on system operaƟon.
For this purpose we use the Phoronix test suite [The14b], which contains macro-benchmark tests
targeƟng speciĮc kernel subsystems such as processor, memory, and disk. We measure the perfor-
mance overhead in Ɵme compared to naƟve execuƟon, with and without Öi�Ê Ø½. The evaluaƟon is
conducted on version 3.14.4 of the Linux kernel. To provide a beƩer understanding of the perfor-
mance overhead we vary the frequency of Įring queries. We use a parƟcular query instance in these
tests, ç�9. This is small sized taking approximately 0.6 milliseconds to run. Then we select the query
Įring frequency based on this query. Table 5.6 presents our measurements.

The Įrst table column lists the macro-benchmark test that we execute, the second one provides
which kernel subsystem the test stresses, the third shows the query frequency set for this test, the
fourth presents the test’s average execuƟon Ɵme, the ĮŌh shows the bandwidth, the sixth states the
standard deviaƟon between subsequent runs of this test reported as a percentage over the mean,
and the seventh presents the overhead of the queries on the system’s performance, as addiƟonal
Ɵme over naƟve execuƟon. The reported measurements denote the average of at least three runs
unless otherwise noted at the standard deviaƟon column.

Query execuƟon frequency can increase up to a limit. Although the overhead is high, Įring queries
at high frequency sƟll leaves the system in a usable state and can be jusƟĮed in one-oī debugging
situaƟons. Obviously, the frequency can not be higher than the duraƟon of the queries being Įred and
the cost of seƫng up the isolated execuƟon environment is an important cost aƩribute of the query
roundtrip especially in ÝÃÖ systems. The preparaƟon cost rises with increasing number of online �Öçs
since it takes longer to wait for all of them to complete non-interrupƟble code execuƟon.

In Figure 5.3 we measure the cost of the stop_machine() uƟlity for three reasons: a) to provide a
complete picture of a Öi�Ê Ø½ query roundtrip, which is the cost of running stop_machine() plus the
cost of the actual query execuƟon, b) to inform how the cost of running stop_machine() evolves in
systems with varying number of �Öçs, and c) to show the level of query execuƟon frequency we can



72 / 121 5.2. DIAGNOSTICS IN THE LINUX KERNEL

Table 5.6: Present ÝØ½ query overhead on system performance.

Test name Kernel subsystem Query frequency
(q/sec)

Average execuƟon
Ɵme (sec)

Bandwidth
(MB/sec)

Standard deviaƟon (%) Overhead (%)

MrBayes (analysis) processor 0 60.91 0.11 0
MrBayes (analysis) processor 2.5 64.30 0.09 5.56
MrBayes (analysis) processor 5 65.31 0.06 7.22
MrBayes (analysis) processor 10 69.40 0.26 13.94
MrBayes (analysis) processor 100 103.48 0.52 69.89
Apache (compile) processor 0 129.62 0.22 0
Apache (compile) processor 2.5 134.00 0.07 3.38
Apache (compile) processor 5 136.44 0.02 5.26
Apache (compile) processor 10 144.94 1.2 11.82
apache (compile) processor 100 201.40 0.06 55.37
LZMA (compress) processor 0 286.73 0.3 0
LZMA (compress) processor 2.5 293.47 0.14 2.35
LZMA (compress) processor 5 298.81 0.33 4.21
LZMA (compress) processor 10 309 0.09 7.76
LZMA (compress) processor 100 404.94 0.2 41.22
SmallPT processor 0 635 0.08 0
SmallPT processor 2.5 660 0.09 3.94
SmallPT processor 5 670 0.00 5.51
SmallPT processor 10 704 0.08 10.86
SmallPT processor 100 972 0.1 53.07
Open FMM Nero2D processor 0 1539.81 1 run 0
Open FMM Nero2D processor 2.5 1575.88 1 run 2.34
Open FMM Nero2D processor 5 1591.97 1 run 3.39
Open FMM Nero2D processor 10 1661.32 1 run 7.89
Open FMM Nero2D processor 100 2104.92 1 run 36.70
Stream memory 0 5.7 2608.80 0.05 0
Stream memory 2.5 5.8 2606.68 0.09 0.08
Stream memory 5 5.9 2606.12 0.11 0.1
Stream memory 10 6 2578.50 1.25 1.16
Stream memory 100 7.2 2007.90 7.79 23.03
RAMspeed (integer) memory 0 817 2143.51 0 0
RAMspeed (integer) memory 2.5 849 2058.56 0 3.96
RAMspeed (integer) memory 5 888 2016.12 1 run 5.94
RAMspeed (integer) memory 10 897 1949.13 1 run 9.07
RAMspeed (integer) memory 100 1116 1580.36 1 run 26.27
RAMspeed (float) memory 0 734 2342.44 0 0
RAMspeed (float) memory 2.5 763 2253.30 0 3.80
RAMspeed (float) memory 5 777 2222.88 1 run 5.10
RAMspeed (float) memory 10 811 2133.76 1 run 8.90
RAMspeed (float) memory 100 1011 1729.57 1 run 26.16
Linux-ker (unpack) disk 0 23.68 3.17 0
Linux-ker (unpack) disk 2.5 24.24 1.23 2.36
Linux-ker (unpack) disk 5 25.16 1.92 6.25
Linux-ker (unpack) disk 10 25.63 1.31 8.23
Linux-ker (unpack) disk 100 31.94 0.66 34.88
Geometric mean 6.59 198.07 2166.68 0.39 4.63
Average 23.5 525.37 2189.17 0.48 11.49

achieve with respect to the number of �Öçs. We take over measurements in a single idle system with
8 dual core �Öçs by hot-plugging �Öçs.12

5.2.4 Results

Wepresent the outcomes of themeasurements regarding query execuƟon eĸciency (SecƟon 5.2.4.1)
and impact on system performance (SecƟon 5.2.4.2).

5.2.4.1 Query execuƟon eĸciency

Query measurements allow a number of observaƟons. First, query evaluaƟon appears to scale well
as the total set size increases. The average amount of Ɵme spent for each record in the relaƟonal
join query (LisƟng 3.15) is the smallest, beaƟng even the average record evaluaƟon Ɵme of the query
performing arithmeƟc operaƟons (ç�9). The cartesian product evaluated for the former approximates
700,000 records. Second, nested subqueries (ç�3) perform well as opposed to �®Ýã®Ä�ã evaluaƟon
(ç�4), which seems to be the source of large average execuƟon Ɵme per record. Third, mulƟple
page cache accesses (ç�8) during a query evaluaƟon are aīordable, incurring the second best record
evaluaƟon Ɵme and topping even arithmeƟc operaƟons (ç�9), which, as expected, are very eĸcient.

According to thememory spacemeasurements during query execuƟon, Öi�Ê Ø½ hasmodestmem-
ory space requirements for most query plans. We disƟnguish two queries due to their signiĮcantly

12 echo 0 > /sys/devices/system/cpu/cpuX/online
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Figure 5.3: Fixed query cost depending on number of �Öçs.

larger memory space footprint. The relaƟonal join query (LisƟng 3.15) requires 1.5Ã� but this can
be jusƟĮed by the evaluated total set size, which approximates 700» records. The second query with
large memory space requirements, almost 3.5Ã�, is the one involving �®Ýã®Ä�ã evaluaƟon (ç�4). The
sizeable footprint is explained by the implementaƟon of the �®Ýã®Ä�ã algorithm to remove duplicates
from the original result set of 827 records.

5.2.4.2 Impact on system performance

The measurements reveal that there is a piece-wise linear relaƟonship between the tested query
frequencies and the resulƟng overhead in high query frequency as Figures 5.4(a) and 5.4(c) show.
In addiƟon, Öi�Ê Ø½ achieves lower overall overhead in computaƟonally tough tests (Figures 5.4(d)
and 5.4(c)). SpeciĮcally, the second toughest test incurs the third lowest overhead, the third toughest
test ranks second in terms of low overhead, and the toughest test incurs the fourth lowest overhead.

The overhead of conƟnuous Öi�Ê Ø½ queries on the system is low up to a frequency of 5 queries
per second (q/sec) allowing the regular background execuƟon of queries. We see that above this rate
the execuƟon isolaƟon feature of Öi�Ê Ø½ kicks in doubling this overhead at the frequency of 10 q/sec
(Figure 5.4(b)). SƟll, the overhead is modest at this point with a value below 10% for 6 out of 9 tests
and a maximum value of 14%.

Tests that stress the processor are parƟcularly important due to the nature of our approach. If we
examine the overhead measured at the same query frequency between diīerent processor tests, we
observe that the overhead tends to decrease with longer computaƟon periods. Examining the slope
of the lines in Figure 5.4(a) we observe a rate of decrease in the segment between query frequency
levels 2.5 and 5 q/sec compared to the iniƟal one, then a rate of increase similar to the iniƟal one
up to 10 q/sec, then a rate of decrease up to 100 q/sec that is larger than the decrease rate in the
segment between 2.5 and 5 q/sec.

Overall, the highest frequency level of 100 q/sec imposes a strong demand for computaƟon on the
system leading to high overhead. For example, this seƫng provides the capacity to detect changes to
the system’s state by querying it at high frequency.

Regarding the cost of the stop_machine uƟlity, we Įnd that it rises approximately linearly as we
add �Öçs in the system (see Figure 5.3).
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(a) Overhead - frequency plot (b) Overhead - frequency plot zooming in 0-10 q/sec
range for plot in Figure 5.4(a)

(c) RelaƟonship between query frequency and cumulaƟve performance
overhead for processor tests

(d) RelaƟonship between query frequency and execuƟon Ɵme for processor
tests

Figure 5.4: Impact on system performance
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Standard data structure 
definition [Valgrind 
header file].

typedef struct {
  int sizeB;
} MemCheck_Chunk;

Catch a reference to the data 
structure [Valgrind source code].

MemCheck_Chunk *malloc_list;
...
pico_ql_register(malloc_list, 
"memory_profile");

Write relational representation of data 
structure [PiCO QL DSL file].

CREATE STRUCT VIEW MemoryProfileSV (
  sizeBytes INT FROM sizeB
)

Map data structure to the relational representation 
[PiCO QL DSL file].

CREATE VIRTUAL TABLE MemoryProfile
USING STRUCT VIEW MemoryProfileSV
WITH REGISTERED C NAME memory_profile
WITH REGISTERED C TYPE MemCheck_Chunk *

Start the query library and poll for 
queries [Valgrind source code].

...
pico_ql_serve();
...

Execute the PiCO QL compiler, which generates 
the source code of the relational interface.

int MemoryProfile_search(...) {
  ...
  switch(col) {
  case 0:
    for (MemoryProfile_begin(tuple_iter, i); \
        MemoryProfile_end(i, size); \
        MemoryProfile_advance(tuple_iter, ++i)) {
      if (compare(tuple_iter->sizeB,operator,rhs)
        add_to_result_set(); } }

Compile Valgrind with PiCO QL.Compile Valgrind with PiCO QL.

PiCO_QL_make:
        $(MAKE) -C $(PiCO_QL_srcdir)
memcheck_main.o: memcheck_main.c PiCO_QL_make

Upon starting Valgrind instrumentation open 
browser at localhost:8080 to execute queries.

INPUT FIRST STEP [FOUR TASKS IN ANY ORDER]

SECOND STEP THIRD STEP

FOURTH STEP

Figure 5.5: WorkŇow for embedding Öi�Ê Ø½ to Valgrind

5.3 Analysis of memory proĮles in the Valgrind instrumentaƟon frame-
work

Figure 5.5 shows the setup workŇow followed in order to use Öi�Ê Ø½ with Valgrind. We present
the method (SecƟon 5.3.1), the use cases (SecƟon 5.3.2), the measurements (SecƟon 5.3.3), and the
outcomes (SecƟon 5.3.4).

5.3.1 Method

Weevaluate Öi�Ê Ø½ using three axes of analysis: use cases, performancemeasurements, and user ex-
periment. Use cases (SecƟon 5.3.2) show how Öi�Ê Ø½ can aid soŌware tesƟng and analysis by extract-
ing valuable informaƟon from three Valgrind tools, Memcheck, Cachegrind, and Callgrind, through a
high-level relaƟonal interface. QuanƟtaƟve evaluaƟon presents the execuƟon Ɵme for a variety of
queries with diverse computaƟon requirements (SecƟon 5.3.3). Finally, we conduct a user experi-
ment to record users’ evaluaƟon of our interface compared to a popular alternaƟve, Python scripƟng.
We present the user study in a separate secƟon (SecƟon 5.4).

5.3.2 Use cases

The use cases show queries that leverage memory check metadata collected by Memcheck, cache
analysis metadata gathered by Cachegrind, and funcƟon call history metadata accumulated by Call-
grind. Two of the use cases show that our approach can be used to answer performance quesƟons
tackled in a well-received text in the Įeld [Gre13].

For each tool we present Įrst the Öi�Ê Ø½ representaƟons we produced. Table 5.7 depicts the
rules used to map data structure associaƟons to each virtual table schema. Data structure names in
the table map intuiƟvely to virtual table names. Note that in our work with Valgrind we did not come
across anymany-to-many associaƟons; had we found any, our approach would accommodate them.
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Table 5.7: Data structure associaƟon mapping according to our relaƟonal representaƟon’s rules

From To Rule
Memcheck
memory_proĮle execuƟon_context 2b
Cachegrind
cache_proĮle cache_metrics 2b
cache_proĮle code_locaƟon 2b
cache_proĮle branch_metrics 2b
Callgrind
applicaƟon_thread jump_call_cost_center 3
applicaƟon_thread basic_block_cost_center 3
jump_call_cost_center basic_block_cost_center 2a
jump_call_cost_center cost_id 2a
basic_block_cost_center basic_block_cost_center (recursion) 3
basic_block_cost_center basic_block 2a
basic_block_cost_center cost_id 2a
basic_block funcƟon_node 2a
funcƟon_node funcƟon_context 2b

Rule No Rule descripƟon (see SecƟon 3.1.1)
1 scalar aƩributes of a class or struct become columns in the virtual table that represents the

struct or class
2 has-one associaƟons, which include nested data structures and references to nested data

structures, can be represented in two ways, a) as columns in a separate virtual table that
stands for the contained data structure or b) as columns within the parent data structure’s
virtual table

3 has-many associaƟons, which include nested groups of data structures, such as an array or
a list, and references to nested groups of data structures, are represented by an associated
table that corresponds to the set of contained data structures.

5.3.2.1 Memcheck

Memcheck [SN05] is a memory checker that instruments an applicaƟon’s memory operaƟons and
prints memory errors during its execuƟon. It also provides a synopsis of its Įndings at program ter-
minaƟon.

Figure 5.6 shows Memcheck’s data structure model and relaƟonal representaƟon. At the Ɵme of
applicaƟon execuƟon, Memcheck records memory blocks allocated as per applicaƟon requests. Each
allocaƟon is requested from an execuƟon context that corresponds to a speciĮc instrucƟon memory
address. We use this informaƟon to extract the locaƟon of the instrucƟon by calling Valgrind’s public
instrumentaƟon interface that provides these metadata. This data extracƟon process is completely
transparent to users who may ask for the object, source Įle, funcƟon, and line that an allocaƟon
happens as any other data. Because each memory block has-one execuƟon context and there is no
point in making this relaƟonship explicit we apply rule 2b (see Table 5.7).

Memcheck’s memory integrity checks rely on shadowmemory, that is, on data structures of type
shadow_memory that record the validity and addressability (ò�) state of every byte of memory used
by an applicaƟon. Memcheck stores the ò� informaƟon for each byte used by an applicaƟon in a pair
of bits. Consequently, each slot, that is 8 bits, in the va_store character array holds the ò� state of
4 bytes of applicaƟon memory. Although the data structure that stores the memory proĮle is not
associated with the shadow memory data structure, the memory address range of each block in the
memory proĮle can be used to Įnd the right index in the shadow memory where each word’s ò�
metrics are stored. We capitalise on this capability to design a relaƟonal representaƟon of shadow
memory that exposes ò� metrics for each memory word at byte-level when it is associated to an
applicaƟon memory block.
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memory_profile

+starting_memory_block_address: unsigned long

+number_of_allocated_4B_memory_blocks: unsigned long

+ec: execution_context *

shadow_memory

+va_store: char[]

execution_context

+memory_address: unsigned long []

1

1

(a) Memcheck model

N

1

MemoryProfile

codeLocationFile TEXT

codeLocationFunction TEXT

codeLocationLine INT

codeLocationObject TEXT

allocatedByFunction TEXT

startingMemoryBlockAddress BIGINT

numberOfAllocated4BMemoryBlocks BIGINT

FOREIGN KEY(shadowMemoryId)

REFERENCES ShadowMemory

ShadowMemory

memoryAddressStart BIGINT

memoryAddressEnd BIGINT

VAofAll4Bytes INT

(b) Virtual table schema

Figure 5.6: Memcheck’s data structure model and relaƟonal representaƟon

LisƟng 5.19: Locate parƟaly deĮned bytes.
SELECT codeLocaƟonFuncƟon , codeLocaƟonLine , starƟngMemoryBlockAddress,
codeLocaƟonFile , codeLocaƟonObject , allocatedByFuncƟon ,
COUNT(*) AS PDBsPerMemoryAllocaƟon
FROMMemoryProĮle
JOIN ShadowMemoryView ON base=shadowMemoryId
WHERE VAof1stByte = ‘‘ partdeĮned ’ ’
OR VAof2ndByte = ‘‘ partdeĮned ’ ’
OR VAof3rdByte = ‘‘ partdeĮned ’ ’
OR VAof4thByte = ‘‘ partdeĮned ’ ’
GROUP BY starƟngMemoryBlockAddress
ORDER BY PDBsPerMemoryAllocaƟon DESC;

Memcheck stores detailedmetadata, such as code locaƟon, that enable it to carry out comprehen-
sive integrity checks and discover errors. However, important informaƟon about the instrumented
applicaƟon’s memory proĮle, hidden in the metadata, goes to waste. For instance, a use case con-
cerns certain pieces of applicaƟon code that are generaƟng a large number of parƟally deĮned bytes
(Ö��). These are individual bytes in memory, which are not fully deĮned, and therefore not usable.
P��s may be the source of errors, which Valgrind spots, but in cases where Ö��s are legiƟmate, they
remain unnoƟced. In large numbers Ö��s may cause non-trivial waste of memory space and perfor-
mance degradaƟon. Öi�Ê Ø½ pinpoints the root of Ö��s by mapping Ö��s to source code locaƟons
through an appropriate ÝØ½ query shown in LisƟng 5.19.

LisƟng 5.19 references two virtual tables, MemoryProĮle and ShadowMemory. MemoryProĮle
represents an array that keeps record of all memory allocaƟons requested by a running applicaƟon
instrumented by Valgrind, along with related metadata. The query in LisƟng 5.19 joins each mem-
ory allocaƟon (MemoryProĮle) requested by the instrumented applicaƟon with the shadowmemory
(ShadowMemory), looks for partly deĮned bytes recorded for an allocaƟon in the shadow memory,
counts them per memory allocaƟon, and orders the tuples by descending number of partly deĮned
bytes. The result set includes metadata corresponding to each allocaƟon, namely the funcƟon, line
number, and Įle name it took place, the startmemory address of the allocated block, and the funcƟon
it was allocated by the block.

ShadowMemory is not amere virtual table, but a relaƟonal view, which is a popular feature of ÝØ½
implementaƟons. RelaƟonal views are important because they can store recurring queries thereby
relieving users from the strain of draŌing them each Ɵme theywant to use them. The relaƟonal views,
which are non-materialized, can be deĮned in the �Ý½ using the standard �Ù��ã� ò®�ó notaƟon, as
shown in LisƟng 5.20. The ShadowMemory view deĮnes an alias for queries that retrieve shadow
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LisƟng 5.20: RelaƟonal view deĮniƟon stores query idenƟfying shadow memory ò� bits for 4 Byte
words
CREATE VIEW ShadowMemoryView AS
SELECT base, memoryAddressStart
(SELECT CASE
WHEN VAofAll4Bytes = 170 THEN ‘‘deĮned ’ ’
ELSE ‘‘ some_undeĮned’’
END) VAofAll4Bytes ,
(SELECT CASE
WHEN VAofAll4Bytes & 3 = 0 THEN ‘‘noaccess’ ’
WHEN VAofAll4Bytes & 3 = 1 THEN ‘‘undeĮned’ ’
WHEN VAofAll4Bytes & 3 = 2 THEN ‘‘deĮned ’ ’
WHEN VAofAll4Bytes & 3 = 3 THEN ‘‘ partdeĮned ’ ’
END) VAof1stByte
(SELECT CASE
WHEN (VAofAll4Bytes >> 2) & 3 = 0 THEN ‘‘noaccess’ ’
WHEN (VAofAll4Bytes >> 2) & 3 = 1 THEN ‘‘undeĮned’ ’
WHEN (VAofAll4Bytes >> 2) & 3 = 2 THEN ‘‘deĮned ’ ’
WHEN (VAofAll4Bytes >> 2) & 3 = 3 THEN ‘‘ partdeĮned ’ ’
END) VAof2ndByte
(SELECT CASE
WHEN (VAofAll4Bytes >> 4) & 3 = 0 THEN ‘‘noaccess’ ’
WHEN (VAofAll4Bytes >> 4) & 3 = 1 THEN ‘‘undeĮned’ ’
WHEN (VAofAll4Bytes >> 4) & 3 = 2 THEN ‘‘deĮned ’ ’
WHEN (VAofAll4Bytes >> 4) & 3 = 3 THEN ‘‘ partdeĮned ’ ’
END) VAof3rdByte
(SELECT CASE
WHEN (VAofAll4Bytes >> 6) & 3 = 0 THEN ‘‘noaccess’ ’
WHEN (VAofAll4Bytes >> 6) & 3 = 1 THEN ‘‘undeĮned’ ’
WHEN (VAofAll4Bytes >> 6) & 3 = 2 THEN ‘‘deĮned ’ ’
WHEN (VAofAll4Bytes >> 6) & 3 = 3 THEN ‘‘ partdeĮned ’ ’
END) VAof4thByte

FROM ShadowMemory;

memory validity and accessibility bits (ò�bits).
The case statements in the view check the recorded state of a ò�bits 8-bit set, which records the

state of 4 memory bytes allocated to the instrumented applicaƟon. The Įrst case checks whether
some of the 4 pairs of bits are undeĮned by tesƟng whether the bitset is 10101010, which amounts
to the integer value 170. This form denotes four pairs of bits with the value 2, which encodes that a
shadowed byte is fully deĮned.

Memcheck’s analysis is crucial for debugging an applicaƟon’s memory errors but error analysis
can be diĸcult if errors are numerous. Memcheck records twelve diīerent kinds of errors modelled
as a union structure since an error is of a speciĮc kind. For each kind, the tool stores parƟcular data
related to this kind like leak size for a leak error. Öi�Ê Ø½ deĮnes a relaƟonal representaƟon for each
error kind so that error kind informaƟon can be retrieved in a query through a join operaƟon to the
relaƟonal representaƟon (LisƟng 5.21). Since an error can be of any kind, joining to the relaƟonal
representaƟon of each error kind is required. This is computaƟonally cheap since only one join will
be processed and this join bears the cost of a pointer traversal; however, from a programming point
of view it is expensive. Thankfully, we can deĮne a view for this query in the �Ý½ descripƟon and hide
this cost too. Finally, we can add semanƟcs to extracted data to aid readability as is the case with an
error kind.

A relaƟonal view of this sort provides us with the opportunity to analyse errors through ÝØ½
queries to pinpoint criƟcal nodes in program memory errors. LisƟng 5.22 retrieves errors grouped
by the funcƟons they appear in and their kind and ordered by their accumulated appearances.

The size of allocated memory blocks during a program’s run is important in tracking erroneous
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LisƟng 5.21: Expose full informaƟon for error recorded and tag semanƟcs to extracted data
SELECT
(SELECT CASE WHEN kind = 0 THEN ’Err_Value’
WHEN kind = 1 THEN ’Err_Cond’
WHEN kind = 2 THEN ’Err_CoreMem’
WHEN kind = 3 THEN ’Err_Addr’
WHEN kind = 4 THEN ’Err_Jump’
WHEN kind = 5 THEN ’Err_RegParam’
WHEN kind = 6 THEN ’Err_MemParam’
WHEN kind = 7 THEN ’Err_User’
WHEN kind = 8 THEN ’Err_Free ’
WHEN kind = 9 THEN ’Err_FreeMismatch’
WHEN kind = 10 THEN ’Err_Overlap’
WHEN kind = 11 THEN ’Err_Leak’
WHEN kind = 12 THEN ’Err_IllegalMempool’
END) mcErrorTag, *
FROM ErrorVT
JOIN ErrorValueVT EV
ON EV.base = value_id
JOIN ErrorCondVT EC
ON EC.base = cond_id
JOIN ErrorCoreMemVT ECM
ON ECM.base = coremem_id
JOIN ErrorAddrVT EA
ON EA.base = addr_id
JOIN ErrorJumpVT EJ
ON EJ.base = jump_id
JOIN ErrorRegParamVT ERP
ON ERP.base = regparam_id
JOIN ErrorMemParamVT EMP
ON EMP.base = memparam_id
JOIN ErrorUserVT EU
ON EU.base = user_id
JOIN ErrorFreeVT EF
ON EF.base = free_id
JOIN ErrorFreeMismatchVT EFM
ON EFM.base = freemismatch_id
JOIN ErrorOverlapVT EO
ON EO.base = overlap_id
JOIN ErrorLeakVT EL
ON EL.base = leak_id
JOIN ErrorIllegalMempoolVT EIM
ON EIM.base = illegalmempool_id ;

paƩerns in the program’s memory allocaƟon operaƟons. For instance, LisƟng 5.23 rounds memory
allocaƟon sizes at the megabyte (Ã�) level using integer division, then counts memory allocaƟons
per Ã�, and Įnally orders them by decreasing count frequency. Memcheck does not output detailed
memory block allocaƟon informaƟon. Gregg [Gre13, p.247] lists an idenƟcal task with DTrace to sum-
marise the requested size of memory allocaƟons for a speciĮc process presented as a power-of-two
frequency distribuƟon format.

Moving on, LisƟng 5.24 reports the number of bytes in allocated memory blocks that are un-
deĮned and the accumulated bytes wasted for each memory block. These provide a measure to
alignment holes caused by bad organisaƟon of data structures and fragmentaƟon introduced by the
dynamic memory allocator in the course of a program execuƟon.

A related analysis task involves retrieving stack trace metadata, such as funcƟon name and line
number, for memory block allocaƟons. LisƟng 5.25 presents such a query, which orders stack traces
resulƟng tomemory allocaƟons that exceed 1Ã� of memory by decreasing size. Gregg [Gre13, p.248]
describes a similar taskwith DTrace to summarise the requested size ofmemory allocaƟons decorated
with stack trace metadata.

Another potenƟal task examines aggregated memory allocaƟons in the context of speciĮc func-
Ɵons or funcƟon families. LisƟng 5.26 retrieves the total size of memory allocated for each funcƟon
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LisƟng 5.22: Group errors by funcƟon they appear in and sum their appearances and leak size
SELECT fn_name, addr, line_no , Įle_name,
obj_name, thread_id , mcErrorTag,
SUM(count) AS appear, SUM(leak_size)
FROM ErrorFullV
JOIN IPVT
ON base=execontext_id
GROUP BY fn_name, mcErrorTag
ORDER BY appear;

LisƟng 5.23: Retrieve number of memory allocaƟons per Ã� ordered by decreasing size of memory
allocaƟon.
SELECT sizeBytes / 1000000
AS memoryAllocaƟonSizeInMB, COUNT(*) AS numberOfAllocaƟonsAtMBSize

FROMMemoryProĮle
GROUP BYmemoryAllocaƟonSizeInMB
ORDER BYmemoryAllocaƟonSizeInMB;

LisƟng 5.24: Count undeĮned bytes per memory allocaƟon.
SELECT starƟngMemoryBlockAddress, sizeBytes , codeLocaƟonFuncƟon ,

codeLocaƟonLine , SUM(bytesWasted)
FROM (

SELECT starƟngMemoryBlockAddress, sizeBytes , codeLocaƟonFuncƟon ,
codeLocaƟonLine ,
CAST( validityBitTag = ’undeĮned’ AS INTEGER) AS bytesWasted

FROMMemoryProĮle
JOIN ShadowMemoryView
ON base=shadowMemoryId
WHERE validityBitTag = ’undeĮned’

) BW
GROUP BY starƟngMemoryBlockAddress
ORDER BY SUM(bytesWasted) DESC;

whose namematches BZ2_bzCompressInit only. This is a funcƟon of bzip2, which takes care of mem-
ory allocaƟons. We will meet it again in the evaluaƟon outcomes.

5.3.2.2 Cachegrind

Cachegrind is a performance analysis tool for recording a program’s interacƟon with the computer’s
cache hierarchy. Cachegrind provides cache performancemetrics associated to the code that triggers
a cache access. Figure 5.7 depicts its data structure model and virtual table schema. Branch metrics
count condiƟonal and indirect branching occurrences and mispredicƟons. Since all associaƟons in
the data structure model are intuiƟve has-one instances we opt for using rule 2(b) of SecƟon 3.1.1 to
avoid the expressional and computaƟonal cost of joins.

Cachegrind’s bookkeeping allows Öi�Ê Ø½ to extract useful paƩerns regarding cache uƟlisaƟon
through its ÝØ½ interface. In addiƟon, analysis can happen interacƟvely at runƟme avoiding the need
to dump and read intermediate metadata.

A common aspect of studying cache uƟlisaƟon is the raƟo between cache accesses and cache
misses, especially for code locaƟons associated with a large number of cache accesses. LisƟng 5.27
retrieves source code lines tagged with more than 1Ã instrucƟon cache read accesses ordered by
descending level 1 instrucƟon cache read misses and level 2 instrucƟon cache read misses.

Another moƟvaƟng example regards exploring the overall cache uƟlisaƟon related to source code
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LisƟng 5.25: Retrieve total size of allocated memory blocks per source code line whose size exceeds
a Ã� ordered by decreasing total size.
SELECT codeLocaƟonFuncƟon , codeLocaƟonLine , starƟngMemoryBlockAddress,
codeLocaƟonFile , codeLocaƟonObject ,
SUM(sizeBytes) AS totalSizeBytesPerLOC
FROMMemProĮle
GROUP BY codeLocaƟonFile, codeLocaƟonFuncƟon , codeLocaƟonLine
HAVING totalSizePerLOC > 1000000
ORDER BY totalSizePerLOC DESC;

LisƟng 5.26: Inspect the total size of memory allocaƟons in Bytes for BZ2_bzCompressInit.
SELECT codeLocaƟonFuncƟon , codeLocaƟonLine , starƟngMemoryBlockAddress,

codeLocaƟonFile , codeLocaƟonObject , allocatedByFuncƟon , sizeBytes
FROMMemoryProĮle
WHERE codeLocaƟonFuncƟon LIKE ’BZ2_bzCompressInit’
ORDER BY sizeBytes DESC;

lines of speciĮc funcƟon families to discover potenƟal sources of boƩlenecks. LisƟng 5.28 returns total
cachemetrics for disƟnct source code locaƟons that belong to a funcƟonwhose namematches lookup
ordered by descending data cache read misses.

At a higher level, we might be interested to aggregate cache uƟlisaƟon for disƟnct funcƟons in
order to discover boƩlenecks owed to the implementaƟon of speciĮc funcƟons or code blocks within
them. LisƟng 5.29 returns total cache metrics for each source code funcƟon ordered by level 1 data
cache write misses.

5.3.2.3 Callgrind

Callgrind is a funcƟon call history recording tool. Callgrind aƩributes costs to a program’s basic blocks
and to jump calls between those blocks. In addiƟon, Callgrind records relaƟonships between code
basic blocks, which belong to speciĮc funcƟons. A basic block is a block of source code with at most
one call instrucƟon, e.g., funcƟon call. Since basic blocks can be executed in mulƟple contexts, they
have mulƟple basic block cost centres associated to them. A separate layer of cost centres is used to
store recursion costs. Callgrind can record the above informaƟon for each applicaƟon thread sepa-
rately. Although complex, this model Įts well in a relaƟonal interface and provides a good context for
demonstraƟng the advantages of a relaƟonal representaƟon. Figure 5.8 shows a part of Callgrind’s
data structure model and its relaƟonal representaƟon.

A common task in dynamic call graph analysis regards spoƫng methods that are never called in
the course of a program’s execuƟon. LisƟng 5.30 inspects the execuƟon counter of each basic block’s
execuƟon contexts to discover basic blocks that are never executed.

To debug performance boƩlenecks it oŌen helps to observe execuƟon counters related to a basic
block execuƟon and the accumulated cost of the associated execuƟon context. LisƟng 5.31 selects the
basic blocks and associated metadata that contribute the most instrucƟon execuƟon cost. Callgrind
takes speciĮc measures to handle recursion, that is, it models recursion for each basic block cost
at a parƟcular context as an array of basic block costs nested to the Įrst basic block cost. These
map to the recursion levels of each funcƟon. Thus Öi�Ê Ø½ uses an addiƟonal join operaƟon (see
BasicBlockCostCenterRecursion) to include recursion costs in query computaƟon.

SomeƟmes jump calls, such as method calls between basic blocks account for a signiĮcant part of
execuƟon cost, for example due to repeated invocaƟons of a method. LisƟng 5.32 groups recorded
jump calls per basic block that iniƟates the call, aggregates themby the number of instrucƟons fetched
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LisƟng 5.27: Catch source code lines with over 1Ã cache instrucƟon read accesses.
SELECT codeLocaƟonFile , codeLocaƟonFuncƟon , codeLocaƟonLine ,
cacheInstrucƟonReadAccesses , cacheInstrucƟonReadMissL1 ,
cacheInstrucƟonReadMissL2 , branchCondiƟonalTotal ,
branchCondiƟonalMispredicted , branchIndirectTotal ,
branchIndirectMispredicted

FROM Cachegrind
WHERE cacheInstrucƟonReadAccesses > 1000000
ORDER BY cacheInstrucƟonReadMissL1 DESC,
cacheInstrucƟonReadMissL2 DESC;

LisƟng 5.28: Retrieve total cache metrics for source code locaƟons of funcƟons whose namematches
’lookup’ ordered by descending data cache read misses.
SELECT codeLocaƟonFile , codeLocaƟonFunc, codeLocaƟonLine ,
SUM(cacheInstrucƟonReadAccesses), SUM(cacheInstrucƟonReadMissL1),
SUM(cacheInstrucƟonReadMissL2), SUM(cacheDataReadAccesses),
SUM(cacheDataReadMissL1), SUM(cacheDataReadMissL2),
SUM(cacheDataWriteAccesses), SUM(cacheDataWriteMissL1),
SUM(cacheDataWriteMissL2)
FROM Cachegrind
WHERE codeLocaƟonFuncƟon LIKE ’%lookup%’
GROUP BY codeLocaƟonFile, codeLocaƟonFuncƟon , codeLocaƟonLine
ORDER BY SUM(cacheDataReadMissL1) DESC;

LisƟng 5.29: AƩribute total cache metrics to each funcƟon.
SELECT codeLocaƟonFile , codeLocaƟonFuncƟon , codeLocaƟonLine ,
SUM(cacheInstrucƟonReadAccesses), SUM(cacheInstrucƟonReadMissL1),
SUM(cacheInstrucƟonReadMissL2), SUM(cacheDataReadAccesses),
SUM(cacheDataReadMissL1), SUM(cacheDataReadMissL2),
SUM(cacheDataWriteAccesses), SUM(cacheDataWriteMissL1),
SUM(cacheDataWriteMissL2), SUM(branchCondiƟonalTotal),
SUM(branchCondiƟonalMispredicted), SUM(branchIndirectTotal ),
SUM(branchIndirectMispredicted)
FROM Cachegrind
GROUP BY codeLocaƟonFile, codeLocaƟonFuncƟon
ORDER BY SUM(cacheDataWriteMissL1) DESC;

and data read accesses, and orders them by total number of Ɵmes called. The query returns the top
20 basic blocs by using a ½®Ã®ã clause.

5.3.3 PresentaƟon of measurements

We evaluated Öi�Ê Ø½ on three tools, namely gzip, bzip2, and egrep. The operaƟons that the tools
performed during Valgrind’s recording were to compress a large archive of size 230Ã� and search for
a word in the archive. The evaluaƟon took place on a Mac ÊÝ ø 10.6.8 with 2¦� Ù�Ã and 2.6¦«z Intel
Core Duo processor. We measured query execuƟon Ɵme in terms of �Öç Ɵme provided by ps. Specif-
ically, for each query we invoked ps at query start Ɵme and Įnish Ɵme and calculated the diīerence.
Each Ɵmemeasurement provided in Table 5.8 stands for themean of three runs. We considered three
runs suĸcient because the measurements showed small variance.

We select those tools and operaƟons because they provide an insight on howÖi�ÊØ½ handles vary-
ing input size. Total set size, that is, the total number of rows evaluated, in the cases of LisƟngs 5.19
and 5.24 accounts for 4 byte memory words that were in use by the instrumented applicaƟon at
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LisƟng 5.30: Select basic block metadata for blocks that are never executed.
SELECT DISTINCT BB.memoryAddress, FN.codeLocaƟonFuncƟon,
BB.codeLocaƟonLine , FN. codeLocaƟonFile , BB.codeLocaƟonObject ,
BB. codeLocaƟonOīset , BB. instrucƟonCount
FROM ApplicaƟonThread
JOIN BasicBlockCostCenter BC ON BC.base=T.basicBlockCostCenterId
JOIN BasicBlock BB ON BB.base = BC. basicBlockId
JOIN FuncƟonNode FN ON FN.base = BB.funcƟonNodeId
WHERE NOT BC.execuƟonCounterSum
ORDER BY BB.codeLocaƟonObject, FN. codeLocaƟonFile , FN.codeLocaƟonFuncƟon;

LisƟng 5.31: Retrieve the most computaƟonally expensive basic blocks ordered by descending exe-
cuƟon cost.
SELECT BB.memoryAddress, FN.codeLocaƟonFuncƟon, BB.codeLocaƟonLine ,
FN. codeLocaƟonFile , BB.codeLocaƟonObject , BB. codeLocaƟonObjectOīset ,
BB. instrucƟonCount , SUM(BC.execuƟonCounterSum), SUM(FC.instrucƟonFetches)

FROM ApplicaƟonThread T
JOIN BasicBlockCostCentersAll BC ON BC.base=T. basicBlockCostCentersAllId
JOIN BasicBlockCostCenterRecursion R
ON R.base = BC. basicBlockCostCenterRecursionId

JOIN FullCost FC ON FC.base = R. costId
JOIN BasicBlock BB ON BB.base = R. basicBlockId
JOIN FuncƟonNode FN ON FN.base = BB.funcƟonNodeId
GROUP BY BC.basicBlockId
ORDER BY SUM(BC.execuƟonCounterSum) DESC,

SUM(FC. instrucƟonFetches ) DESC;

the Ɵme the query took place. By Įring queries occasionally during the instrumented execuƟon of
gzip, bzip2, and egrep we observe that gzip has a small memory footprint of 4.2»� early in the
archiving process. Both egrep and bzip2 use 1.5Ã� of memory on average, and bzip2 uƟlise approx-
imately 7.5Ã�. Notably, the total set size observed in LisƟng 5.19 is explained by the fact that each
record represents shadowmemorymetadata, such as validity and addressability informaƟon for each
memory byte associated with a source code locaƟon of allocaƟon. Table 5.8 presents the evaluaƟon
measurements.

5.3.4 Results

Querymeasurements for LisƟngs 5.19 and 5.24 are indicaƟve of Öi�ÊØ½’s scalability. The other queries
that execute against a total set size of a dozen to a few thousand records incur roughly the same trivial
cost, except for LisƟngs 5.32 and 5.31 that combine a set size of a few thousand records and a group
by clause. In fact, LisƟng 5.31 has approximately four Ɵmes larger record set size than LisƟng 5.32
and its execuƟon Ɵme is proporƟonally larger. In LisƟng 5.19, input size grows by a factor of eight
from egrep to bzip2 followed by a less than linear increase in computaƟon Ɵme by a factor of seven.
Öi�Ê Ø½ follows roughly the same performance trend in the query described in LisƟng 5.24, which is
less computaƟonally demanding.

Although Öi�Ê Ø½ seems to scale well as input size increases, querying the shadow memory that
tracks large amounts of applicaƟon memory becomes costly in terms of Ɵme. In an addiƟonal evalu-
aƟon, apart from the ones in Table 5.8, we executed the query in LisƟng 5.19 for a total size of 18.2Ã
records, that is 4� words of shadow memory, which account to 73Ã� of allocated memory space.
It took Öi�Ê Ø½ 1 minute and 20 seconds to evaluate this query. In terms of computaƟon eĸciency,
Öi�Ê Ø½ required 11 Ɵmes more Ɵme to execute a query with 9 Ɵmes bigger input size than the most
demanding one depicted in Table 5.8. Figure 5.9 depicts Öi�Ê Ø½ query execuƟon Ɵme on shadow
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LisƟng 5.32: Retrieve cost factors of basic blocks according to the 20 most frequently executed jump
calls iniƟated from those blocks
SELECT BB.memoryAddress, FN.codeLocaƟonFuncƟon, BB.codeLocaƟonLine ,
BB.codeLocaƟonObject , SUM(FC. instrucƟonFetches ), SUM(FC.dataReadAccesses)
FROM ApplicaƟonThread T
JOIN JumpCall JC ON JC.base=T. jumpCallCostCenterId
JOIN BasicBlockCostCenter BC ON BC.base=JC.fromBasicBlockCostCenterId
JOIN BasicBlock BB ON BB.base = BC. basicBlockId
JOIN FuncƟonNode FN ON FN.base = BB.funcƟonNodeId
JOIN FullCost FC ON FC.base = JC . costId
GROUP BY BC.basicBlockId
ORDER BY SUM(JC.callCounter) DESC
LIMIT 20;
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Figure 5.7: Cachegrind’s data structure model and relaƟonal representaƟon

memory as the amount of applicaƟon memory increases.
The unintuiƟve diīerence that we observe in gzip’s case where the query in LisƟng 5.24 takes

more Ɵme than the query in LisƟng 5.19 can be explained by the cost that the ÝØ½ite virtual machine
imposes, which depends on the query’s semanƟcs and for small data sizes is an important factor.
Indeed, the former is a sophisƟcated query with a nested subquery, ¦ÙÊçÖ �ù, and double ÊÙ��Ù �ù
clauses.

By querying Memcheck’s shadow memory (LisƟng 5.24) during bzip2’s instrumented execuƟon
we extracted that a single memory block of size 3600136 bytes allocated in BZ2_bzCompressInit()
suīered a total of 900078 bytes wasted. This means that 900 »� in the same memory block allocated
for bzip2 have all four bytes undeĮned, which results in 12% memory space waste given that bzip2
requires 7.5 Ã� for its operaƟon in total. The issue persisted with a number of diīerent compression
tasks. Thus, there is an opportunity for Ɵghter memory organisaƟon.

We focused on bzip2 to shed light on its symptom. We retrieved source code locaƟons, such as
funcƟon name and line number, for memory block allocaƟons of signiĮcant size. LisƟng 5.25 presents
such a query, which orders stack traces resulƟng to memory allocaƟons that exceed 1Ã� of memory
by decreasing size. For bzip2, BZ2_bzCompressInit stands out as expected accommodaƟng 7.5Ã� of
memory allocaƟon, that is almost the total amount requested by bzip2. In this way we veriĮed that
this funcƟon plays the most important role in bzip2’s memory allocaƟon operaƟons. Gregg [Gre13,
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Figure 5.8: Callgrind’s data structure model and relaƟonal representaƟon

Table 5.8: Query performance measurements

Tool Memcheck Cachegrind Callgrind
LisƟng 5.19 5.24 5.23 5.25 5.26 5.27 5.28 5.29 5.30 5.32 5.31
Rows returned
gzip 1 2 1 12 0 1 6 363 0 871 20
egrep 2 20 9 346 0 7 6 417 0 1066 20
bzip2 1 180 7 123 1 9 11 716 2 1482 20
Total set size (records)
gzip 1046 1046 2 12 2 425 425 425 3794 1040 3794
egrep 231502 231502 29 346 29 479 479 479 5132 1288 5132
bzip2 1882884 1882884 12 123 12 438 438 438 4378 1046 4378
Time measurements (milliseconds)
gzip 27.0 11.2 10.65 13.69 14.67 10.73 20.69 9.62 13.57 30.14 100.17
egrep 1070.57 302.53 22.54 10.64 24.51 21.32 14.33 9.22 7.79 24.46 111.22
bzip2 7280.31 2522.54 12.49 17.12 15.23 21.20 16.88 9.37 17.47 32.2 113.72

p.248] describes a similar task with DTrace to summarise the requested size of memory allocaƟons
decorated with stack trace metadata.

Then we proceeded to further clarify the organisaƟon of memory allocaƟons for bzip2. The query
in LisƟng 5.23 rounds memory allocaƟon sizes at the megabyte (Ã�) level using integer division, then
counts memory allocaƟons per Ã�, and Įnally orders them by decreasing count frequency. Mem-
check does not output detailed memory block allocaƟon informaƟon. In the result set two mem-
ory allocaƟon blocks are found in the range between 3 and 4 Ã�s, while the rest lay below 1 Ã�.
Gregg [Gre13, p.247] lists an idenƟcal task with DTrace to summarise the requested size of memory
allocaƟons for a speciĮc process presented as a power-of-two frequency distribuƟon format.

Because BZ2_bzCompressInit is the key to bzip2’s memory allocaƟon rouƟnes we examined it
alone. The query in LisƟng 5.26 retrieves the allocated memory blocks for that funcƟon only. Four
blocks were reported and two of them were disƟnct in size as also indicated by the result set of the
query in LisƟng 5.23. The largest block’s starƟng address matched the address where the 900»� of
unusable memory were found. With a further query not presented in this paper we idenƟĮed that all
900»� of unusable memory are conƟguous, they are located at the tail of the block, and all individual
bytes are tagged as undeĮned.

The previous three queries helped collect informaƟon about bzip2’s allocaƟon operaƟons, but
they did not reveal the origin of the issue. Hence, we decided to examine the source code. Unfortu-
nately,Memcheck did not recover source line number informaƟon, but by examiningBZ2_bzCompressInit’s
implementaƟon in bzip2 v1.0.6’s source we concluded that the issue rests in the lines listed in List-
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LisƟng 5.33: Source code lines in bzlib.c that trigger a large number of undeĮned or parƟally deĮned
bytes.

// BZ_N_OVERSHOOT = 34 (calculated from other constants )
// blockSize100K = 9 (by default unless opƟon is passed)

#176 n = 100000 * blockSize100k ;
#177 s−>arr1 = BZALLOC( n * sizeof (UInt32) );
#178 s−>arr2 = BZALLOC( (n+BZ_N_OVERSHOOT) * sizeof(UInt32) );

Table 5.9: Expensive jump calls between basic blocks

Tool From funcƟon Line To funcƟon Line ExecuƟon Counter InstrucƟon Fetches
sort strcoll 36 strcoll_l 473 27007779 33406087951

strcoll_l 593 get_next_seq 154 82915296 10262514873
strcoll_l 595 get_next_seq 154 82915295 10267926563
strcoll_l 504 strlen 66 27007778 1674860884
strcoll_l 505 strlen 66 27007778 1674836034

uniq strcoll 36 strcoll_l 473 16804718 5165064625
strcoll_l 593 get_next_seq 154 9273269 1133162351
strcoll_l 595 get_next_seq 154 9273269 1130978530
strcoll_l 504 strlen 66 8402359 537732818
strcoll_l 505 strlen 66 8402359 537732818

ing 5.33. The data structures in lines 177 and 178 are used for performing block sorƟng during a
compression operaƟon. The two large blocks we idenƟĮed with the queries were of size 3600136
and 3600000 bytes. By calculaƟng the requested bytes for memory allocaƟon from the source in List-
ing 5.33 we derive that the largest block of 3600136 bytes corresponds to line 178. This is the block
that contains the large chunk of undeĮned memory.

AŌer modifying the source code line responsible for this memory allocaƟon we veriĮed that the
large amount of undeĮned bytes disappeared, Memcheck used 12% less memory, and conƟnued to
operate correctly in a number of diīerent compression tasks thatwe tried including bzip2’s installaƟon
tests.

To discover performance-criƟcal code we observe execuƟon counters related to a basic block exe-
cuƟon and the accumulated cost in terms of instrucƟon fetches for the associated execuƟon context.
The query in LisƟng 5.31 selects the basic blocks and associated metadata that contribute the most
instrucƟon execuƟon cost. For sort and uniq the basic blocks that stand out for the execuƟon cost
they incur are contained in funcƟons strcoll and get_next_seq.

To go one step further we invesƟgate jump calls, such as method calls between basic blocks that
account for a signiĮcant part of execuƟon cost, for example due to repeated invocaƟons of a method.
The query in LisƟng 5.32 groups recorded jump calls per basic block that iniƟates the call, aggregates
the execuƟon counter and number of instrucƟons fetched for each block and orders the jump calls
by execuƟon counter of the iniƟaƟng block. The query returns the top 20 basic block pairs by using
a ½®Ã®ã clause. As Table 5.9 presents, we can idenƟfy two hot code execuƟon paths, that is strcoll
to strcoll_l, and then the laƩer calls either get_next_seq or strlen. Source code locaƟons in Table 5.9
correspond to glibc v2.19. This Įnding is in accordwith the result of the query in LisƟng 5.32. Indeed a
later version of glibc (v2.21) has get_next_seq inlined to strcoll_l to improve the laƩer’s performance
(see http://bit.ly/24zvVHM).

5.4 User study

Our empirical study regards the user-based evaluaƟon of Öi�Ê Ø½ compared to a popular alternaƟve,
Python scripƟng, on the Valgrind instrumentaƟon framework. To provide essenƟal background for

http://bit.ly/24zvVHM
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Figure 5.9: Öi�Ê Ø½’s scalability

our tool, we posiƟon it in exisƟng taxonomies of soŌware (SecƟon 5.4.1). We describe in detail the
moƟvaƟon behind our experiment and the quesƟons we try to address (SecƟon 5.4.2). Then, we ex-
plain the experiment’s seƫng (SecƟon 5.4.3), document the evaluaƟon process of experiment data
(SecƟon 5.4.4), and present the results (SecƟon 5.4.5). We Įnish with the presentaƟon of user inter-
face characterisƟcs that our users consider important aŌer performing the evaluaƟon (SecƟon 5.4.6).

5.4.1 SoŌware typology

In the vast taxonomy of soŌware, our soŌware can be regarded as data management soŌware in the
category of applicaƟon soŌware according to the list of soŌware categories in Wikipedia [Theb]. In a
more Įne-grained taxonomy, our tool would be placed in a subcategory Ɵtled query interfaces.

From the perspecƟve of a query language interface taxonomy, our tool accepts queries input
from keyboard using a keyword command language and presents output on screen according to the
framework introduced in reference [JV85].

5.4.2 MoƟvaƟon and quesƟons

Our moƟvaƟon for this empirical study stems from key diīerences between two general types of
interfaces: declaraƟve vs imperaƟve interfaces and live interacƟve vs post-mortem interfaces.

DeclaraƟve interfaces express the logic of a task, that is, what is the desired objecƟve. On the
other hand, imperaƟve interfaces provide a list of steps for performing a task, that is, how the desired
objecƟve will be achieved. Procedural interfaces belong to the imperaƟve paradigm.

The booming of declaraƟve interfaces for a variety of imperaƟve programming models, such as
object-oriented [Mei11, WPN06] and Map-Reduce [TSJ+09, ORS+08] implies advantages of these in-
terfaces complementary to corresponding interfaces for these programming models. Advantages
could be aƩributed for instance to the higher-level of abstracƟon declaraƟve interfaces oīer and
the economies of scale in reusing a standard query language for data analysis.

Live interacƟve interfaces are an important feature of many successful lower-level tools, such as
DTrace [CSL04], Systemtap [PCE+05], and ¦�� [SS96]. On the one end such tools typically dig into
an applicaƟon’s or operaƟng system’s internals; on the other they present a safe, usable interface
that users can interact with at runƟme. Although a human factors experiment with these tools has
not been reported, we think that their runƟme interacƟve interface contributes signiĮcantly to their
success.

The complementary advantages of declaraƟve live interacƟve interfaces could further enhance
the usefulness and usability of the Valgrind framework for its users. These measures have been es-
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tablished as key determinants of user acceptance in the Įeld of informaƟon systems [ANT92, Dav89,
Ven00, VD00]. Usability measures the ease of use and learnability of a system.

In the absence of exisƟng empirical evidence that suggests Öi�Ê Ø½ is beƩer than Python scripƟng
or vice versa, we want to prove or disprove our claims by answering the following quesƟons:

Q1. is Öi�Ê Ø½more useful than Python scripƟng on Įles?

Q2. is Öi�Ê Ø½more usable than Python scripƟng on Įles?

Human factors experiments on programming languages for data manipulaƟon, hence query lan-
guages, have a long history, but there is no recent indicaƟon to describe the current situaƟon. In
addiƟon, the results of studies from the distant past present conŇicƟng results. One research stream
in this area related to our study focuses on the eīect of a query language’s procedurality in user per-
formance [WS81] and producƟvity [HM85] respecƟvely. On this track, an experiment was performed
between ÝØ½ and ã��½�ã. ã��½�ã, The Algebra Based Language for Enquiring of Tables, is a relaƟonally
complete query language that, like ÝØ½, uses Codd’s relaƟonal model. ã��½�ã is more procedural than
ÝØ½ because it uses procedural statementswithin a query, such as ¥ÊÙÃ to create aworking table from
speciĮed columns of a table and ÖÙ®Äã to output the query’s result set. ã��½�ã proved advantageous
for wriƟng more diĸcult queries than ÝØ½ [WS81]. The study’s result was aƩributed to the more pro-
cedural approach that characterised ã��½�ã queries compared to the less procedural ÝØ½ queries. The
authors developed a metric of procedurality for the experiment. Notably, despite having some level
of procedurality, ÝØ½ is considered a nonprocedural language [Rei81]. On the other hand, �Ê�Ê½, a
third-generaƟon procedural language, lagged with respect to producƟvity and eĸciency when com-
pared to a fourth generaƟon non-procedural language [HM85].

A number of comparaƟve experiments between query languages of diīerent procedurality have
also been conducted. We focus on two [YS93, BBE83] that regard ÝØ½ and query by example (Ø��),
a graphical database query language, which is less procedural than ÝØ½. In an online tesƟng setup
carried out in [YS93] user performance was found unaīected of query language type. The other
experiment, focused on the easiness of learning the two languages [BBE83]; ÝØ½ proved easier to
learn except for queries that concerned more than one tables. Most users preferred ÝØ½ to Ø��.

In addiƟon to the above key characterisƟcs we are also interested in raƟng developer produc-
Ɵvity with the tools, that is, how close to achieving an analysis goal users came with each tool and
how eĸciently. We denote those two characterisƟcs performance and eīort respecƟvely. Because a
programming language’s expressiveness aīects user eīort, we also examine the languages’ expres-
siveness through the draŌed code. McConnell [McC04] reports that higher-level languages, such as
�++ and Java, aremore expressive than lower-level languages, such as �. An empirical study examines
programmer producƟvity and programming language expressiveness measured in lines of code with
seven diīerent programming languages [Pre00], but ÝØ½ is not included. Moreover, we found no re-
cent empirical study between ÝØ½ or a declaraƟve language and Python or other imperaƟve language.
In lack of stronger empirical evidence, we set out to answer the following quesƟons:

Q3. is Öi�Ê Ø½more expressive than Python scripƟng on Įles?

Q4. do users require less eīort with Öi�Ê Ø½ than with the Python scripƟng approach?

Q5. do users perform beƩer with Öi�Ê Ø½ than with the Python scripƟng approach?

Thus, we measure, usefulness, usability, expressiveness, eīort, and performance by means of
proxies that we describe in SecƟon 5.4.4. These are the dependent variables of the soŌware used in
the experiment. We measure expressiveness with lines of code aŌer establishing ground rules about
our measuring approach. Users rate eīort in Ɵme units for each query immediately aŌer draŌing it.
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With performance wemeasure a query’s syntacƟc correctness andwhether it reŇects a given analysis
task descripƟon. We choose the term performance because queries that are correct and reŇect the
raƟonale of a given analysis task help users achieve the goal of their analysis.

5.4.3 Experimental design

5.4.3.1 Users

The experiment took place aŌer the spring semester of 2015. We considered Įnal year undergraduate
students that selected the elecƟve course Advanced Topics in SoŌware Engineering. Ten students
volunteered for the experiment.

We followed a between groups experiment approach, where one group draŌed ÝØ½ queries with
Öi�Ê Ø½ and the other scripƟng with Python. Thus, students formed two groups of Įve students each.
Students joined the group that most matched their core competences.

All students reported one to three years of experience with the target programming language of
their group. All students had aƩended a university course on both Python and ÝØ½. In addiƟon, all
members of the Python group had undertaken a Python project and two of those had a job as Python
developers. At the ÝØ½ group, one student had worked in an ÝØ½ project and another worked as ÝØ½
developer.

5.4.3.2 Seƫng

We provided each group with a descripƟon of the ÝØ½ or Python data model accordingly. The exper-
iment consisted of answering ten quesƟons by wriƟng queries in ÝØ½ or Python respecƟvely. Both
groups worked on the same set of ten quesƟons.

In order to have an equal basis of comparison between the two groups, the Python group received
setup assistance. Because Valgrind tools store a subset of their collected metadata in Įles, parsing
of the Įles is then required before users can employ Python to analyse the metadata. We provided
both Valgrind tools’ reports and Python code for parsing them to the Python group. Users only wrote
Python code for each query in boilerplate Įles, which they could then execute with the Python inter-
preter to examine the produced output. On the other hand, the Öi�Ê Ø½ group draŌed ÝØ½ queries on
Öi�Ê Ø½’s web interface, which interacted with an acƟve instrumented execuƟon of an applicaƟon.

Before draŌing queries, users Įlled in an online form regarding their level of competence in ÝØ½ or
Python respecƟvely. During the experiment, users provided each query corresponding to each task
descripƟon on the online evaluaƟon formmenƟoning also whether they used online help for a query
and how much Ɵme it took them to answer it. AŌer the experiment, users rated in Likert 1–5 scale
each of the evaluaƟon criteria, that is, usefulness and usability, of the tool they used by answering
twenty quesƟons, ten for each evaluaƟon criterion. We adopted the quesƟons for measuring use-
fulness from reference [Dav89] and usability from an online source.13 The complete form for each
group is available online. 14 15

5.4.3.3 Tasks

We provided tasks of varying diĸculty to be able to examine thoroughly the quality characterisƟcs of
each of the two interfaces. QuesƟons followed an easy/medium/hard division. Out of ten quesƟons,
two were easy, six were of medium diĸculty, and two were hard. The division was based on the
language features and combinaƟons of those needed to use in order to answer a quesƟon.

13hƩp://www.measuringu.com/sus.php
14hƩps://docs.google.com/forms/d/e/1FAIpQLSdgSUCUL-RrTMepOhI5TI59etB5PsMkiGGfBXCY-l9L4sSeIQ/viewform
15hƩps://docs.google.com/forms/d/e/1FAIpQLSejXMhnxFIRK7ceOKicWHMccpnCebgxXQWMKwZhWAvLq0QBtQ/viewform
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Table 5.10: Query characterisƟcs, expressiveness, and performance by level of diĸculty for all tasks

Query characterisƟcs Expressiveness Correct queries
(Lines of code) (Number)

Öi�Ê Ø½ Python Öi�Ê Ø½ Python Öi�Ê Ø½ Python
Easy

Ý�½��ã ¥ÙÊÃ for 2.0 2.0 5 4
Ý�½��ã ¥ÙÊÃ for 2.6 4.5 5 4
Medium

�ÊçÄã ¦ÙÊçÖ �ù for, sum, dict 3.0 6.0 4 4
¹Ê®Ä ÊÄ for, dict 2.7 3.0 4 4
¹Ê®Ä ÊÄ, ÝçÃ for, sum, if 3.0 1.3 1 3
ó«�Ù�, ÊÙ��Ù �ù ��Ý� for, if, sorted, lambda 4.0 6.6 4 5
�ò¦ ¦ÙÊçÖ �ù, ÊÙ��Ù �ù �Ý� for, if, dict, sum, sorted,

lambda
4.0 16.0 4 1

ÝçÃ, ó«�Ù� ½®»�, ÊÙ��Ù �ù ��Ý� for, if, dict, sorted, itemgeƩer 4.7 8.0 4 4
Hard

4 ø ¹Ê®Ä ÊÄ, ¦ÙÊçÖ �ù, ÊÙ��Ù �ù ��Ý�, ½®Ã®ã for, dict, sum, lambda, if 0.0 0.0 0 0
5 ø ¹Ê®Ä ÊÄ, ¦ÙÊçÖ �ù, ÊÙ��Ù �ù ��Ý� for, dict, sum, sorted, itemget-

ter
0.0 3.0 0 1

Table 5.11: Average student scores and p-value per evaluaƟon criterion

Criterion Öi�Ê Ø½ group p-values Python group
1 2 3 4 5 Avg Mann-W Levene Avg 1 2 3 4 5

Usefulness 3.6 4 4.4 3.7 3.7 3.88 0.17 0.19 2.94 4.1 2.4 4 1.8 2.4
Usability 3.1 2.5 3.2 3.0 3.1 2.98 0.54 0.52 2.96 2.6 2.7 3.2 3.6 2.7
Eīort 513.33 277.1 561.5 350.4 645.5 459.3 0.004 0.35 789.8 746.66 734 850.75 924 693.6
Performance 4.4 7.6 5.9 7.9 6.8 6.52 0.21 0.83 5.42 6.3 2.8 6.4 4.6 7.0
Expressiveness 3.50 3.3 3 3.2 3.1 3.23 0.30 0.02 5.3 8 6 2.2 7.2 3

5.4.4 Experimental evaluaƟon

Our evaluaƟon scale to judge correctness of the queries was based on themethod introduced in refer-
ence [WS81]. With the applicaƟon of this scale we derived the scores of the performance dependent
variable. Each answer matched one of the following categories: correct, minor language error, mi-
nor operand error, minor substance error, correctable, major substance error, major language error,
incomplete, and unaƩempted. According to this method an answer placed within the top four cate-
gories was considered correct because it contained onlyminormistakes. We adopted this approach in
our study. Table 5.10 presents the language features, number of correct queries, and query language
expressiveness per diĸculty level.

We performed post-processing work on the experiment data to be able to run staƟsƟcal tests.
First, we evaluated the correctness of queries provided by users as answers to the given tasks ac-
cording to the scale described in the previous paragraph and produced performance scores in scale
1–10. In addiƟon, we manually transformed the Ɵme required to draŌ each query from the form
that each user provided it to seconds and measured lines of code both in ÝØ½ queries and in Python
scripts. In ÝØ½ queries we treated each Ý�½��ã, ¥ÙÊÃ, ¹Ê®Ä ÊÄ, ó«�Ù�, ¦ÙÊçÖ �ù, «�ò®Ä¦, ÊÙ��Ù �ù,
½®Ã®ã clause as a separate line of code, while in Python scripts we treated as a line of code what the
Python interpreter would take as one. For instance, we considered a sizeable Python comprehension
that contained two for loops and two if condiƟons as one line of code, but we regarded an if condiƟon
with one statement as two lines of code.

AŌerwards, we computed a user’s average score across all a) ten quesƟons for each of the eval-
uated criteria on the form, that is usefulness, and usability, b) tasks to measure performance, c) at-
tempted tasks to measure eīort, and d) correct tasks to measure expressiveness.

We then conducted a Kolmogorov-Smirnov test to idenƟfy whether the scores on each of the cri-
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teria followed a normal distribuƟon. Because they did not, we performed Mann-Whitney’s unpaired
non-parametric one-sided test at the 0.99 conĮdence level to check whether Öi�Ê Ø½ proved staƟsƟ-
cally beƩer than Python on each of the dependent variables. We also carried out Levene’s test to test
equality of variances between the two groups’ scores for each dependent variable. The input dataset
for each group contains all average user scores on usefulness, usability, and performance. The dataset
also includes users’ average eīort scores only for aƩempted tasks and average expressiveness scores
only for correct tasks to avoid distorƟon.

5.4.5 Experimental results

Table 5.11 presents the datasets and the p-values provided by the staƟsƟcal tests for each variable.

Q4. The between groups experiment revealed staƟsƟcally signiĮcant diīerences in user eīort with
99%conĮdence in favour of Öi�ÊØ½. A possible explanaƟon for the diīerences is thatwriƟng ÝØ½
queries that execute on arbitrary data structures provides a more comprehensive abstracƟon
for analysis than traversing the data structures using iterators or funcƟonal constructs; the laƩer
impose implementaƟon details that users do not need to know. In pair with the language, the
relaƟonal data model might provide friendlier conceptual representaƟon for users to grasp and
use. In light of the staƟsƟcal evidence, we accept this hypothesis.

Q1. Q3. Q5. Although Öi�ÊØ½ had beƩer average scores in usefulness, performance, and expressive-
ness, the diīerences were not staƟsƟcally signiĮcant for our sample. This Įnding discourages
our claims that Öi�Ê Ø½ is beƩer than Python in the examined dimensions. Therefore, we reject
hypotheses Q1, Q4, and Q6. A glimpse over the average user scores between the two groups
for each of the discussed measures show Öi�Ê Ø½ scores have substanƟally lower variance than
Python scores. Levene’s test shows equality of variance for expressiveness scores between the
two groups. This suggests that the observed diīerences might as well be a random eīect. But
for usefulness and performance where equality of variance is not proven it might be the case
that for this level of knowledge an average user Įnds our tool more useful and performs beƩer
with our tool and is required to write fewer lines of code on average in less Ɵme than Python.

Q2. Pi�Ê Ø½ and Python received approximately the same scores on usability. Consequently the
answer to Q2 is negaƟve. This is not what we anƟcipated. We expected that Öi�Ê Ø½’s live
interacƟve user interface with the data model representaƟon on it would make a diīerence
in these respects. We observed, however, elements of this diīerence from other experiment
data presented in SecƟon 5.4.6. According to a user interface characterisƟcs raƟng presented in
SecƟon 5.4.6 the datamodel representaƟon on the query interface received almost unanimous
preference. Because users only evaluated one tool, as a next step the scores could be further
clariĮed and validated with an addiƟonal experiment where users evaluate both. Another side
note is that the between groups approach imposes an indirect comparison between the two
compeƟtors. If users evaluated both tools, the results would provide clearer evidence as to
score diīerences.

5.4.6 User interface preferences

A further quesƟon we would like to answer is how good an interface our work provides for analysing
an applicaƟon’smemory operaƟons proĮle and how close our proposed interface falls to users’ needs.
For this reason at the experiment’s end we asked parƟcipaƟng users to select useful interface charac-
terisƟcs from a list in order to see what kind of interface the preferences sketch. Figure 5.10 presents
user preferences.
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Figure 5.10: User preferences of interface characterisƟcs

A straighƞorward and important Įnding is the need to present the data model on the query in-
terface. All but one user agreed on this including the whole Python user group whose evaluaƟon
interface lacked this feature. Then there are four axes of comparisons. First, on command-line vs
graphical environment with typed input the laƩer clearly wins. In fact it collects 4 out of 5 votes
from Python’s user group, which implies that they would prefer a graphical environment. Second,
data availability for analysis during instrumented execuƟon and post-mortem manipulaƟon prefer-
ences are almost equally divided. The Öi�Ê Ø½ user group appreciates more the availability of live
data than the Python group. A potenƟal explanaƟon for Python group’s low interest is that their eval-
uaƟon was completely disconnected from an instrumented execuƟon in order to relieve users from
a dump-parse-extract cycle of Valgrind data. On a related note, the availability of a live interacƟve
interface gathered half of the total votes; we expected more especially from the Öi�Ê Ø½ group. Third,
on object-oriented vs relaƟonal data model we idenƟfy a tangible precedence of the laƩer owed to
the Öi�Ê Ø½ group. The Python group voted both data models equivalently. Fourth, the bars of object-
oriented query languages and ÝØ½ show that ÝØ½ aƩracted more user votes. Compared to the data
model comparison, votes are more clearly divided between the two groups. Even though only two
members of the Python group voted for ÝØ½, two members of the Python group, probably the same,
in their reply to our thank you note for parƟcipaƟng in the experiment commented that they missed
ÝØ½ in the experiment process.
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5.4.7 Threats to validity

There are three main threats to validity related to our study. First, our user sample is small and fo-
cused, thus it may not be representaƟve of the populaƟon of programmers or data analysts. There
are pros and cons in our sample’s characterisƟcs. As undergraduate students, users had a few years
of programming experience, but for the same reason they an had open mind regarding the tools’
evaluaƟon.

Second, our study may be limited to the Valgrind instrumentaƟon framework and its results may
not be generalisable to other systems and plaƞorms. Our study evolved around Valgrind, thus we
cannot claim the applicaƟon of our study’s results to other systems. As a side note, users’ interacƟon
with Valgrind happened through the Öi�Ê Ø½ or Python interface and none of the users had ever used
Valgrind; they carried out the experiment given a documentaƟon of each Valgrind tool’s Öi�Ê Ø½ or
Python data model. Consequently, whether our Įndings present in other systems or not is an open
quesƟon.

Third, the fact that we marked ourselves the ÝØ½ queries and Python scripts draŌed by subjects
in the user study threatens the validity of the study. The criteria for marking come from a published
empirical study [WS81] and we provide the whole material of the user study, that is, the quesƟon
forms and answers, available online to allow the reproducƟon of the study’s results.

5.4.8 LimitaƟons

We note two limitaƟons regarding this work, queries to data structures of big size and synchronous
live interacƟve queries.

The main limitaƟon of this work is the inability to handle big data, such as querying byte to byte
shadow memory informaƟon about allocated memory blocks when these account to hundreds of
Ã�s, not tomenƟon ¦�s. The computaƟonal cost becomes too high for thousands ormore ofmillions
of words in our single-threaded implementaƟon. One alternaƟve is to introduce mulƟple threads in
order to achieve performance boost. In addiƟon, we can specify the ½®Ã®ã clause in ÝØ½ queries to
reduce the computaƟonal burden but this is not a generic soluƟon as it would not restrict queries
that would return fewer rows than what the ½®Ã®ã clause speciĮes. In addiƟon, queries with ÊÙ��Ù
�ù and ¦ÙÊçÖ �ù clauses have to be evaluated completely, grouped and/or ordered and then have
their result set limited. Another alternaƟve that can reduce computaƟon is to introduce sampling
according to amemory block’s size and return an indicaƟon of the instrumented applicaƟon’s internal
memory organisaƟon. At the protecƟon front, an emergency buƩon in the user interface, which
terminates a heavy duty query and returns the current result set, and perhaps a progress bar and
a Ɵmeout mechanism are the most trustworthy soluƟons to this problem. Finally, since a selecƟon
of memory allocaƟon blocks is very cheap in computaƟonal terms, it would allow Öi�Ê Ø½ to query
shadow memory for these blocks with limited possibility to Ɵmeout.

Synchronous live interacƟve queries require synchronisaƟon primiƟves, which the Valgrind frame-
work does not use. If it did use, Öi�Ê Ø½ would be able to share them through simple deĮniƟons writ-
ten in the �Ý½ descripƟon. Currently Öi�Ê Ø½’s interface is conĮgured to poll for queries. In this case,
Öi�Ê Ø½ occasionally polls for a query and if one is in line, then it stops the world, performs the query,
and handles control back to the Valgrind tool. Asynchronous queries provide an alternaƟve with sat-
isfying characterisƟcs, that is, low overhead and programming eīort to implement and interacƟvity
with the evolving state of an instrumented applicaƟon’s memory proĮle given some, adjustable, la-
tency. Another possibility is to use a snapshot with copy on write for querying. Finally, Valgrind can
collaborate with ¦�� for debugging purposes.



Chapter 6

Conclusions and Future Work

This thesis presented the design and implementaƟon of an approach for mapping imperaƟve pro-
gramming models to a relaƟonal query interface. In this chapter we summarise the results of our
research, present the overall contribuƟon of our work, discuss potenƟal avenues for future work,
and conclude our thesis.

6.1 Summary of results

Our approach allows ÝØ½ queries to execute on a program’s main memory data structures through a
relaƟonal representaƟon that we introduce. The implementaƟon, Öi�Ê Ø½, delivers a usable ÝØ½ inter-
face for interacƟve, ad-hoc queries to �/�++ applicaƟon data structures. Its evaluaƟon within three
�++ applicaƟons shows query expressiveness, scalable query speed, and a lowmemory footprint. For
applicaƟons that only require a ��ÃÝ’s query faciliƟes, a fully-Ňedged ��ÃÝ is superŇuous. Intro-
ducing it would mean adding an intrusive dependency, extra overhead, and wriƟng boilerplate code
for interacƟng with the applicaƟon, which would liƩer applicaƟon code. For applicaƟons with heavy
online processing, such as scienƟĮc compuƟng and visualizaƟon applicaƟons, interacƟve queries are
both tough and important.

We show that Pi�Ê Ø½ is advantageous in situaƟons that require managing soŌware state, such
as operaƟng system diagnosƟcs. Our relaƟonal interface to accessible Linux kernel data structures
delivers custom high level views of low level system data, which are hidden in complex data struc-
tures. The implementaƟon is type-safe, secure, and provides consistent kernel state views for data
structures protected in criƟcal secƟons that do not involve blocking. We exemplify Öi�Ê Ø½’s contri-
buƟon in diagnosing security vulnerabiliƟes, operaƟon bugs, and performance issues. Our evaluaƟon
demonstrates that this approach is eĸcient and scalable by measuring query execuƟon cost and the
impact on system performance. We present a small number of queries on top of Öi�Ê Ø½’s relaƟonal
interface, which currently amounts to 50 virtual tables. However, the kernel’s relaƟonal representa-
Ɵon with Öi�Ê Ø½ is only limited by the kernel’s data structures. In fact, it is easy for everyone to roll
their own probes by following the tutorial available online [M. 13].

Finally, we apply our live interacƟve ÝØ½ interface on a running applicaƟon’s memory proĮle. We
argue that our interface increases producƟvity in analysing an applicaƟon’s memory proĮle. First, our
work reduces the analysis lifecycle signiĮcantly because it realises live interacƟve queries for Mem-
check and Cachegrind. This is parƟcularly useful in analysing long-running applicaƟons, such as Fire-
fox and OpenOĸce. Second, Öi�Ê Ø½ can reduce programming eīort more without sacriĮcing either
readability or expressiveness by expressing sophisƟcated queries that build on the shoulders of oth-
ers using relaƟonal views. Finally, Öi�Ê Ø½ exposes a wealth of collected metadata hidden in Valgrind
tools’ data structures.

Our evaluaƟon with Valgrind reveals a number of intended uses for Öi�Ê Ø½; three of those follow.
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First, we note the leveraging of Memcheck’s shadowmemory to examine the internal organisaƟon of
allocated memory blocks. A second pracƟcal use case is to observe the evolving cache uƟlisaƟon cost
ranks aƩributed to speciĮc source code locaƟons. Finally, we highlight the examinaƟon of evolving
call history related costs and speciĮcally computaƟonally expensive jump calls.

According to the results of our user study, users want a data model representaƟon on a graphical
user interface and prefer querying a relaƟonal data model with ÝØ½ to an object-oriented alternaƟve.
The results are not clear on the relaƟve importance between live and post-mortem data availability.
Live and post-mortem interfaces seem to be complementary useful.

We list below the speciĮc results of this dissertaƟon.

• A method for represenƟng main memory data structures in relaƟonal form [FSL15]

• An implementaƟon for querying main memory data structures of � and �++ applicaƟons with
ÝØ½ [FSL16]

• An evaluaƟon of the expressiveness, temporal eĸciency, and spaƟal eĸciency of our approach
within three �++ applicaƟons, a virtual observatory of stellar objects, a ¦®Ý applicaƟon, and a
source code analyzer.

• A Linux kernel diagnosƟc tool that provides ÝØ½ queries on the kernel’s data structures

• A method for extracƟng consistent views of the Linux kernel’s state transparently

• An evaluaƟon of the usefulness of our kernel diagnosƟc tool for diagnosing problems with the
system’s operaƟon. Our tool spots bugs, security vulnerabiliƟes, and opportuniƟes for per-
formance opƟmisaƟons. The overhead of our approach to the system’s operaƟon is accept-
able [FSLB14]

• A diagnosƟc tool that extends the Memcheck, Cachegrind, and Callgrind tools of the Valgrind
instrumentaƟon framework [FSL19]. Our extension provides ÝØ½ queries to the tools’ gaathered
metadata for analysing memory proĮles.

• An evaluaƟon of the usefulness of our Valgrind diagnosƟc tool for analysing memory proĮles,
which shows that it idenƟĮes opportuniƟes for performance opƟmisaƟons in the way applica-
Ɵons use the hierarchy of memory

• A user study that tackles the usefulness, usability, eīort, performance, and expressiveness of
our approach. We measure usefulness and usability through qualitaƟve analysis of quesƟon-
aires. We measure eīort, performance, and expressiveness quanƟtaƟvely through the evalua-
Ɵon of the code wriƩen. Two groups of six students each express data analysis tasks with ÝØ½
queries and Python code respecƟvely. The results of the staƟsƟcal tests on the students’ scores
show that user eīort is lower with our approach. Öi�Ê Ø½ also scores higher in usefulness, per-
formance, and expressiveness, but the diīerences are not staƟsƟcally signiĮcant. Finally, in
terms of usability both approaches score equally well.

6.2 Overall contribuƟon

Wedescribe the contribuƟon of our work on three fronts: science and research, soŌware community,
and business. Regarding the Įrst front, our work’s research results are described in SecƟon 6.1.

Our contribuƟon to the soŌware community is the availability of the Öi�Ê Ø½ library including the
Linux kernel and the Valgrind diagnosƟc tools as open source soŌware hosted at Github.1 Table 6.1
shows the metrics of our library regarding its use.

1https://github.com

https://github.com
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Table 6.1: Usage metrics of the Öi�Ê Ø½ soŌware library

Downloads 182
Stars 8
Forks 3

On the business front, Genesys 2 a California-based company that oīers telecommunicaƟons and
customer experience services uses Öi�Ê Ø½ for debugging purposes. The speciĮc use case regards
issuing ÝØ½ queries against a hierarchical �++ data model where containers hold string elements and
other containers thereby forming parent-child relaƟonships.

The concept behindourworkmayhave contributed to the birth of a similar diagnosƟc tool that has
become very popular. A fewmonths aŌer the Öi�Ê Ø½ kernel module’s publicaƟon, Facebook released
osquery,3 an open source soŌware project that supports ÝØ½ queries to system data made available
by the operaƟng system system components, and applicaƟons. It uses ÝØ½®ã�’s virtual tables to create
a relaƟonal interface to the various data sources. The speciĮc common points and diīerences with
Öi�Ê Ø½ are detailed in SecƟon 2.3.1. Osquery has accumulated more than seven thousand stars and
nine hundred forks so far at Github. According to its website, osquery is currently used by a number
of very demanding enterprises including Facebook.

6.3 Future work

We consider two possible avenues for future work with Öi�Ê Ø½. The Įrst regards its use within em-
bedded systems and the second its ability to perform stream processing.

Embedded systems usually have Ɵght requirements regarding the compuƟng resources they can
provide and the soŌware faciliƟes they can support. Öi�Ê Ø½ combines naƟve code, compact con-
ĮguraƟon, and low memory requirements at runƟme. These characterisƟcs make it a compelling
alternaƟve for use in an embedded system.

Öi�Ê Ø½ can deliver analyƟcs and diagnosƟcs services in the form of ad-hoc ÝØ½ queries. It can
execute user-driven queries to the data that reside in an embedded system. In addiƟon, Öi�Ê Ø½ can
present views of the state of the embedded system using its data in order to unveil concerns with the
system’s health.

The second potenƟal research avenue regards processing of structured data that Ňow in a stream
with Öi�Ê Ø½. Given an incoming stream, a relaƟonal speciĮcaƟon of its data, and a window Öi�Ê Ø½
will generate the relaƟonal interface to the data, compile a minimal applicaƟon, and execute it to
present a live interacƟve relaƟonal interface to the streaming data. Users will be able to enter ÝØ½
queries to Öi�Ê Ø½’s web interface and visualise data produced by queries scheduled to run at Įxed
intervals. Our research will focus on stream processing aspects and methods for parsing the data
stream into a structured form appropriate for querying with ÝØ½.

6.4 Conclusions

This thesis documented the problems with the analysis of program and system data and an architec-
ture that promises cost eīecƟve system management, simpliĮed programming, and integrated data
management. For the problems regarding the analysis of data we presented a method and an imple-
mentaƟon for providing ÝØ½ queries on main memory data structures. We described the evaluaƟon

2http://www.genesys.com
3https://osquery.io

http://www.genesys.com
https://osquery.io
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of this work on three �++ applicaƟons, the Linux kernel, and the Valgrind instrumentaƟon framework.
The evaluaƟon suggested that our work is:

• useful, through the idenƟĮcaƟonof security vulnerabiliƟes in the Linux kernel andopportuniƟes
for performance opƟmisaƟons in applicaƟons instrumented by Valgrind

• usable, through a user study that compared Öi�Ê Ø½ with Python scripƟng

We hope that out work will help in the race towards more eĸcient processing and eīecƟve anal-
ysis of the available data.



Appendix A

Appendix

A.1 C++ and SQL code for the queries used in the evaluated applicaƟons

The mark x in comments denotes that the corresponding lines have not been accounted for the pro-
gram’s lines-of-code metric.

A.1.1 Stellarium

LisƟng A.1: UC1
/* C++ lines of code: 14
* x: excluded
*/
void cpp_query1() {
PlanetP iter ;
std :: set<double> resultsetP ;
double min_distance;
std :: vector<Meteor*>:: iterator it ;
for ( int i = 0; i< 100; i ++) { /* x */
foreach ( iter , solar−>getAllPlanets ()) {

if (strcmp( iter .data()−>getNameI18n(). toStdString (). c_str (), ”Earth” ))
resultsetP . insert ( iter .data()−>getDistance ());

} /* x */
min_distance = *min_element(resultsetP.begin (), resultsetP .end ());
if (meteor−>getAcƟve() && meteor−>getAcƟve()−>size() > 0) {
std :: cout << ”Min distance is :: ” << min_distance

<< std :: endl ; /* x */
std :: cout << ”observdistance | velocity | ” /* x */

<< ” magnitude | scalemagnitude ” /* x */
<< std :: endl ; /* x */

for ( it = meteor−>getAcƟve()−>begin(); it != meteor−>getAcƟve()−>end(); it ++) {
if (((* it )−>xydistance > min_distance) && ((* it )−>alive )) {
std :: cout << (* it )−>xydistance << ” | ”

<< (* it )−>velocity << ” | ” /* x */
<< (* it )−>mag << ” | ” /* x */
<< (* it )−> distMulƟplier /* x */
<< std :: endl ; /* x */

} /* x */
} /* x */

} /* x */
} /* x */

} /* x */
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LisƟng A.2: UC2
/* C++ lines of code: 22
* x: excluded
*/
void cpp_query2(SolarSystem *s) {
PlanetP iterP , iterSP ;
Ňoat minAxisRotaƟon , spAxisRotaƟon ;
bool inserted ;
std :: mulƟmap<Ňoat , std :: pair<Ňoat , std :: string > > aggregate ;
std :: pair<Ňoat , std :: string > axisName;
std :: mulƟmap<Ňoat , std :: pair<Ňoat , std :: string > >:: reverse_iterator aggrRit ;
for ( int i = 0; i < 100; i ++) { /* x */
minAxisRotaƟon = 100000000; /* x */
inserted = false ; /* x */
foreach ( iterP , s−>getAllPlanets ()) {
inserted = false ;
minAxisRotaƟon = 100000000;
if (StelApp :: getInstance (). getCore()−> getProjecƟon (

StelApp :: getInstance (). getCore()−> getHeliocentricEclipƟcModelViewTransform ())−>checkInViewport(
iterP−>screenPos) {

foreach ( iterSP , (* iterP ). satellites ()) {
spAxisRotaƟon = (* iterSP ). axisRotaƟon ;
if ((* iterP ). axisRotaƟon > spAxisRotaƟon ) {
if ( spAxisRotaƟon < minAxisRotaƟon ) {
minAxisRotaƟon = spAxisRotaƟon ;
inserted = true ; /* x */

} /* x */
} /* x */

} /* x */
if ( inserted ) {
axisName=make_pair(minAxisRotaƟon, (* iterP ). getNameI18n(). toStdString ());
aggregate . insert ( std :: pair<Ňoat , std :: pair<Ňoat , std :: string >>((* iterP ). axisRotaƟon , axisName));

} /* x */
} /* x */

} /* x */
std :: cout << ” name | PlanetRotaƟon | ”

<< ” MinSatelliteRotaƟon ” << std :: endl ; /* x */
for ( aggrRit = aggregate . rbegin (); aggrRit != aggregate .rend (); aggrRit ++) {
std :: cout << (*aggrRit ). second.second << ” | ”

<< (*aggrRit ). Įrst << ” | ” /* x */
<< (*aggrRit ). second. Įrst /* x */
<< std :: endl ; /* x */

} /* x */
aggregate . clear (); /* x */

} /* x */
} /* x */
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LisƟng A.3: UC3
/* C++ lines of code: 20
* x: excluded
*/
void cpp_query3(SolarSystem *s) {
PlanetP iterP , iterSP ;
std :: mulƟmap<std:: string , std :: pair< int , Planet *> > aggregate ;
std :: pair< int , Planet *> pSatellites ;
std :: mulƟmap<std:: string , std :: pair< int , Planet *> >:: iterator aggrIt ;
int count = 0;
Planet *currentP;
for ( int i = 0; i < 100; i ++) { /* x */
foreach ( iterP , s−>getAllPlanets ()) {
count = 0;
if (StelApp :: getInstance (). getCore()−> getProjecƟon (

StelApp :: getInstance (). getCore()−> getHeliocentricEclipƟcModelViewTransform ())−>checkInViewport(
iterP−>screenPos) {

foreach ( iterSP , (* iterP ). satellites ()) {
if ((* iterSP ). hasAtmosphere())

count++;
} /* x */
if (count > 0) {

pSatellites = std :: make_pair (count, iterP .data ());
aggregate . insert ( std :: pair<std :: string , std :: pair< int , Planet*>>(

(* iterP ). getNameI18n(). toStdString (), pSatellites ));
} /* x */

} /* x */
} /* x */
std :: cout << ” name | radius | ”

<< ”period | albedo | NoSatellitesAtm ” /* x */
<< std :: endl ; /* x */

for ( aggrIt = aggregate .begin (); aggrIt != aggregate .end (); aggrIt ++) {
currentP = (* aggrIt ). second.second;
std :: cout << (* aggrIt ). Įrst << ” | ”

<< currentP−>getRadius() << ” | ” /* x */
<< currentP−>getSiderealDay() << ” | ” /* x */
<< currentP−>albedo << ” | ” /* x */
<< (* aggrIt ). second. Įrst /* x */
<< std :: endl ; /* x */

} /* x */
aggregate . clear (); /* x */

} /* x */
} /* x */
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LisƟng A.4: UC4
/* C++ lines of code: 37, x : excluded */
Ňoat fn ( Ňoat max, Ňoat current ) {
return max >= current ? max : current ;

} /* x */
void cTrackDB_cpp_query1(CTrackDB *c) {
QMap<QString, CTrack*>* m = (QMap<QString, CTrack *> *)&c−>getTracks();
QMap<QString, CTrack*>:: iterator iter ;
QList<CTrack :: pt_t >:: iterator it ;
std :: vector<std :: mulƟmap<double, Ňoat> > resultset ;
std :: mulƟmap<Ňoat , std :: pair<double,QMap<QString, CTrack*>:: iterator > > aggregate ;
std :: vector<std :: mulƟmap<double, Ňoat> >:: iterator rsIt ;
std :: mulƟmap<double, Ňoat >:: iterator groupBy;
std :: pair<std :: mulƟmap<double,Ňoat>:: iterator , std :: mulƟmap<double,Ňoat>:: iterator > ret ;
Ňoat speed_max;
double currentAz ;
std :: pair<double, QMap<QString, CTrack*>:: iterator > p;
std :: mulƟmap<Ňoat , std :: pair<double, QMap<QString, CTrack*>:: iterator > >:: iterator aggrIt ;
double azimuth, totalDistance , ascend, descend; /* x */
int totalTimemoving, totalTime ; /* x */
std :: string name; /* x */
CTrack *curTrack ; /* x */
for ( int i = 0; i < 10; i ++) { /* x */
for ( iter = m−>begin(); iter != m−>end(); iter++) {

resultset .push_back(std :: mulƟmap<double, Ňoat >());
for ( it = iter . value()−> getTrackPoints (). begin (); it != iter . value()−> getTrackPoints (). end (); it ++) {

resultset .back (). insert ( std :: pair<double, Ňoat >( it−>azimuth, it−>speed));
} /* x */

} /* x */
speed_max =−2000000;
iter = m−>begin();
for ( rsIt = resultset .begin (); rsIt != resultset .end (); rsIt ++) {
for (groupBy = (* rsIt ). begin (); groupBy != (* rsIt ). end ();) {
currentAz = (*groupBy). Įrst ;
ret = (* rsIt ). equal_range(currentAz );
if ( ret . Įrst == ret .second)
speed_max = ret . Įrst −>second;

else {
for ( std :: mulƟmap<double, Ňoat >:: iterator it = ret . Įrst ; it != ret .second; it ++)
speed_max = fn(speed_max, it−>second);

} /* x */
p = std :: make_pair ( currentAz , (QMap<QString, CTrack *>:: iterator ) iter );
aggregate . insert ( std :: pair<Ňoat , std :: pair<double, QMap<QString, CTrack*>:: iterator > >(speed_max, p ));
speed_max =−2000000;
groupBy = ret .second;

} /* x */
iter ++;

} /* x */
std :: cout << ”name | descend | ascend | distance | ”

<< ” totalƟme | totalƟmemoving | azimuth | ” /* x */
<< ” max(speed)” << std :: endl ; /* x */

for ( aggrIt = aggregate .begin (); aggrIt != aggregate .end (); aggrIt ++) {
speed_max = (*aggrIt ). Įrst ; /* x */
azimuth = (* aggrIt ). second. Įrst ; /* x */
curTrack = (* aggrIt ). second.second.value (); /* x */
totalTimemoving = curTrack−>getTotalTimeMoving(); /* x */
totalTime = curTrack−>getTotalTime(); /* x */
totalDistance = curTrack−>getTotalDistance (); /* x */
ascend = curTrack−>getAscend(); /* x */
descend = curTrack−>getDescend(); /* x */
name = curTrack−>getName().toStdString (); /* x */
std :: cout << name << ” | ” << descend << ” | ” /* x */

<< ascend << ” | ” << totalDistance << ” | ” /* x */
<< totalTime << ” | ” << totalTimemoving << ” | ” /* x */
<< azimuth << ” | ” /* x */
<< speed_max << ” | ” << std :: endl ; /* x */

} /* x */
} /* x */
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LisƟng A.5: UC5
/* C++ lines of code: 49, x : excluded */
void cTrackDB_cpp_query2(CTrackDB *c) {
QMap<QString, CTrack*>* m = (QMap<QString, CTrack *>*)&c−>getTracks(); /* x */
QMap<QString, CTrack*>:: iterator iter ;
QList<CTrack :: pt_t >:: iterator it ;
// heartRateBpm, elevaƟon /* x */
std :: vector<std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > > > resultset ;
// maxAvgspeed, elevaƟon , heartRateBpm /* x */
std :: mulƟmap<Ňoat , std :: pair<Ňoat , std :: pair< int , QMap<QString, CTrack*>:: iterator > > > aggregate ;
std :: vector<std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > > >:: iterator rsIt ;
std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > >:: iterator groupBy, groupByNext, groupByEnd, mIter ;
std :: pair<std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > >:: iterator ,

std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > >:: iterator > ret ;
Ňoat maxAvgspeed =−100.0, currentAvgSp, currentEle = 0.0;
int currentHr = 0;
std :: mulƟmap<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > > mapEle;
std :: pair<std :: mulƟmap<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > >:: iterator ,

std :: mulƟmap<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > >:: iterator > ret2 ;
std :: pair<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > > pairEle ; /* x */
std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > pairAvg ; /* x */
std :: pair< int , QMap<QString, CTrack*>:: iterator > pairHr ; /* x */
std :: mulƟmap<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > >:: iterator mapEleIt , groupBy2;
double totalDistance , ascend, descend; /* x */
int totalTimemoving, totalTime , heartRate; /* x */
Ňoat ele ; /* x */
std :: string name; /* x */
for ( int i = 0; i < 10; i ++) { /* x */
for ( iter = m−>begin(); iter != m−>end(); iter++) {

resultset .push_back(std :: mulƟmap<int, std :: pair<Ňoat , Ňoat > >());
for ( it = iter . value()−> getTrackPoints (). begin (); it != iter . value()−> getTrackPoints (). end (); it ++) {

resultset .back (). insert ( std :: pair< int , std :: pair<Ňoat , Ňoat > >( it−>heartReateBpm,
std :: make_pair( it−>ele, it−>avgspeed)));

} /* x */
} /* x */
iter = m−>begin();
for ( rsIt = resultset .begin (); rsIt != resultset .end (); rsIt ++) {
for (mIter = (* rsIt ). begin (); mIter != (* rsIt ). end ();) {
currentHr = mIter−>Įrst ; /* x */
currentAvgSp = mIter−>second.second; /* x */
currentEle = mIter−>second. Įrst ; /* x */
ret = (* rsIt ). equal_range(currentHr );
if ( ret . Įrst == ret .second) {
if (currentAvgSp > 0) {
pairHr = std :: make_pair ( currentHr , iter ); /* x */
pairEle = std :: make_pair ( currentEle , pairHr ); /* x */
aggregate . insert ( std :: pair<Ňoat , std :: pair<Ňoat ,

std :: pair< int , QMap<QString, CTrack*>:: iterator > > >(currentAvgSp, pairEle ));
maxAvgspeed =−100.0;

} /* x */
} else {
for (groupBy = ret . Įrst ; groupBy != ret .second; groupBy++) {
pairAvg = std :: make_pair (groupBy−>second.second, (QMap<QString, CTrack *>:: iterator ) iter ); /* x */
mapEle. insert ( std :: pair<Ňoat , std :: pair<Ňoat , QMap<QString, CTrack*>:: iterator > >(groupBy−>second.Įrst ,

pairAvg ));
} /* x */
for (mapEleIt = mapEle.begin (); mapEleIt != mapEle.end ();) {
currentEle = mapEleIt−>Įrst ; /* x */
ret2 = mapEle.equal_range(currentEle );
if ( ret2 . Įrst == ret2 .second) {
maxAvgspeed = mapEleIt−>second.Įrst ;

} else {
for (groupBy2 = ret2 . Įrst ; groupBy2 != ret2 .second; groupBy2++) {
if (maxAvgspeed < groupBy2−>second.Įrst) {
maxAvgspeed = groupBy2−>second.Įrst;
currentEle = groupBy2−>Įrst ;

} /* x */
} /* x */

} /* x */
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LisƟng A.6: UC5 (conƟnue)
if (maxAvgspeed > 0) {
pairHr = std :: make_pair ( currentHr , iter ); /* x */
pairEle = std :: make_pair ( currentEle , pairHr ); /* x */
aggregate . insert ( std :: pair<Ňoat , std :: pair<Ňoat ,

std :: pair< int , QMap<QString, CTrack*>:: iterator > > >(maxAvgspeed, pairEle ));
} /* x */
mapEleIt = ret2 .second;
maxAvgspeed =−100.0;

} /* x */
mapEle.clear ();

} /* x */
mIter = ret .second;

} /* x */
} /* x */
std :: cout << ”Aggregate size : ” << aggregate . size () << std :: endl ; /* x */
std :: cout << ”name | descend | ascend | distance | ”

<< ” totalƟme | totalƟmemoving | ” /* x */
<< ”heartRateBpm | elevaƟon | ” /* x */
<< ” max(avgspeed)” << std :: endl ; /* x */

std :: mulƟmap<Ňoat , std :: pair<Ňoat , std :: pair< int , QMap<QString, CTrack*>:: iterator > > >:: reverse_iterator aggrRIt ;
CTrack *currentTrack ; /* x */
for ( aggrRIt = aggregate . rbegin (); aggrRIt != aggregate .rend (); aggrRIt ++) {
maxAvgspeed = (*aggrRIt ). Įrst ; /* x */
ele = (*aggrRIt ). second. Įrst ; /* x */
heartRate = (*aggrRIt ). second.second. Įrst ; /* x */
currentTrack = (*aggrRIt ). second.second.second.value (); /* x */
totalTimemoving = currentTrack−>getTotalTimeMoving(); /* x */
totalTime = currentTrack−>getTotalTime(); /* x */
totalDistance = currentTrack−>getTotalDistance (); /* x */
ascend = currentTrack−>getAscend(); /* x */
descend = currentTrack−>getDescend(); /* x */
name = currentTrack−>getName().toStdString (); /* x */
std :: cout << name << ” | ”

<< descend << ” | ” /* x */
<< ascend << ” | ” /* x */
<< totalDistance << ” | ” /* x */
<< totalTime << ” | ” /* x */
<< totalTimemoving << ” | ” /* x */
<< heartRate << ” | ” /* x */
<< ele << ” | ” /* x */
<< maxAvgspeed << ” | ” << std :: endl ; /* x */
} /* x */

resultset . clear (); /* x */
aggregate . clear (); /* x */

} /* x */
} /* x */
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LisƟng A.7: UC6
/* C++ lines of code: 23
* x: excluded
*/
void cpp_query3(CTrackDB *c, CWptDB *w) {
QMap<QString, CTrack*>* m = (QMap<QString, CTrack *> *)&c−>getTracks(); /* x */
QMap<QString, CTrack*>:: iterator iter ;
QList<CTrack :: pt_t >:: iterator it ;
std :: vector<std :: mulƟmap<std:: string ,CTrack :: pt_t*> > resultsetTracks ;
std :: vector<std :: mulƟmap<std:: string , CTrack :: pt_t*> >:: iterator iterTr ;
std :: mulƟmap<std:: string , CTrack :: pt_t*>:: iterator iterTrP ;
std :: vector<CWpt*>:: iterator iterP ;
QMap<QString, CWpt*>* p = (QMap<QString, CWpt *> *)&w−>getWpts();
QMap<QString, CWpt*>::iterator iterWpts ;
std :: vector<CWpt*> resultsetWpts;
for ( int i = 0; i < 10; i ++) { /* x */
for ( iter = m−>begin(); iter != m−>end();iter++) {

resultsetTracks .push_back(std :: mulƟmap<std:: string , CTrack :: pt_t *>());
for ( it = iter . value()−> getTrackPoints (). begin (); it != iter . value()−> getTrackPoints (). end (); it ++) {
if ( it−>ele > 20) {

resultsetTracks .back (). insert ( std :: pair<std :: string , CTrack :: pt_t*>( iter . value()−>getName(). toStdString (), &*it ));
} /* x */

} /* x */
} /* x */
for ( iterWpts = p−>begin(); iterWpts != p−>end();iterWpts++) {
if ( iterWpts . value()−>ele > 20) {
resultsetWpts .push_back(iterWpts.value ());

} /* x */
} /* x */
std :: cout << ”name | lon | lat | ele” << std :: endl ;
for ( iterTr = resultsetTracks .begin (); iterTr != resultsetTracks .end (); iterTr ++) {
for ( iterTrP = (* iterTr ). begin (); iterTrP != (* iterTr ). end (); iterTrP ++) {
std :: cout << (* iterTrP ). Įrst << ” | ”

<< (* iterTrP ). second−>lon << ” | ” /* x */
<< (* iterTrP ). second−>lat << ” | ” /* x */
<< (* iterTrP ). second−>ele << ” | ” /* x */
<< std :: endl ; /* x */

} /* x */
} /* x */
for ( iterP = resultsetWpts .begin (); iterP != resultsetWpts .end (); iterP ++) {
std :: cout << (* iterP )−>getName().toStdString () << ” | ” /* x */

<< (* iterP )−>lon << ” | ” /* x */
<< (* iterP )−>lat << ” | ” /* x */
<< (* iterP )−>ele << ” | ” /* x */
<< std :: endl ; /* x */

} /* x */
resultsetTracks . clear (); /* x */
resultsetWpts . clear (); /* x */

} /* x */
} /* x */
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A.1.3 CScout

LisƟng A.8: UC7
/* SQL lines of code: 17 */
SELECT IDS .NAME
FROM (

SELECT EID,FID ,COUNT(FOFFSET)
FROM TOKENS
GROUP BY EID,FID

) AS A
JOIN IDS
ON A.EID=IDS.EID
WHERE IDS.LSCOPE
AND IDS.ORDINARY
AND NOT IDS.READONLY
AND NOT IDS.FUN
AND NOT IDS.UNUSED
AND NOT IDS.CSCOPE
GROUP BY A.EID
HAVING COUNT(A.FID)=1
ORDER BY IDS.NAME;

LisƟng A.9: UC8
/* SQL lines of code: 13 */
SELECT DISTINCT NAME FROM (

SELECT FID FROM (
SELECT EID FROM IDS
WHERE LSCOPE
AND UNUSED
AND NOT READONLY
) AS U

LEFT JOIN TOKENS
ON TOKENS.EID=U.EID
) AS UNUSED

LEFT JOIN FILES
ON FILES.FID=UNUSED.FID
ORDER BY NAME;

LisƟng A.10: UC9
/* SQL lines of code: 7 */
SELECT FUNCTIONS.NAME
FROM FUNCTIONS
JOIN FILES
ON FILES.FID=FUNCTIONS.FID
WHERE NOT RO
AND FANIN=0
ORDER BY FUNCTIONS.NAME;
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A.2 IdenƟfy possible privilege escalaƟon aƩacks with AWK

LisƟng A.11: Shell script that loops through /proc/pid directories.
#!/bin/sh

Įnd /proc −maxdepth 1−name ’[0−9]*’ |
while read −r line ; do

./ ps_perm.awk ”$line/ status ”
done

LisƟng A.12: �ó» script that idenƟĮes possible privilege escalaƟon aƩacks.
#!/bin/awk−f

BEGIN {
su_in_group = 0;
u_to_su = 0;
cred_uid = −1;
ecred_uid = −1;
name = ”N/A”;

}
{
if ($1~/Name:/)
name = $2;

if ($1~/Uid :/) {
cred_uid = $2;
ecred_euid = $5;
if (( cred_uid > 0) && (ecred_euid == 0))
u_to_su = 1;

}
if ($1~/Gid :/) {
n = split ($0, array , ” ” );
for ( i = 1; i <= n; i ++) {
if (( array [ i ] == 4) || ( array [ i ] == 27)) {
su_in_group = 1;
break;

}
}

}
}
END {

if (( su_in_group == 0) && (u_to_su == 1))
prinƞ (”User process %s has performed privilege escalaƟon .” ,

name);
}
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A.3 Dynamic diagnosƟc tasks via Systemtap scripts

LisƟng A.13: Systemtap script that instruments vfs_read() and checks Įle permissions of the execuƟng
process to idenƟfy unauthorised read access to Įles. For our kernel it did not return any.

funcƟon get_task_ecred_fsuid ( t ) %{
struct task_struct *task = ( struct task_struct *)STAP_ARG_t;
if ( task−>real_cred)
STAP_RETVALUE = task−>real_cred−>fsuid;

else
STAP_RETVALUE =−1;

%}

funcƟon found_gid_in_group( fgid , t ) %{
struct task_struct *task = ( struct task_struct *)STAP_ARG_t;
struct group_info *gi = task−>real_cred−>group_info;
int i = 0;
int ret = 0;
for ( i = 0; i < gi−>ngroups; i++) {
if (STAP_ARG_fgid == gi−>small_block[i ]) {
ret = 1;
break;

}
}
STAP_RETVALUE = ret;

%}

probe kernel . funcƟon (”vfs_read”)
{
if (@deĮned($Įle−>f_path−>dentry)) {
f_mode = $Įle−>f_mode
f_owner_euid = $Įle −>f_owner−>euid
ecred_fsuid = get_task_ecred_fsuid ( task_current ())
f_inode_mode = $Įle−>f_path−>dentry−>d_inode−>i_mode
if (f_mode&1 && (f_owner_euid != ecred_fsuid || !f_inode_mode&400)

&& (found_gid_in_group( $Įle−>f_cred−>egid, task_current ())
|| !f_inode_mode&40)

&& !f_inode_mode&4)
prinƞ (”In %s: %s(%d)\n”,

probefunc (), task_execname(task_current ()),
task_pid ( task_current ()))

}
}
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LisƟng A.14: Systemtap script that traverses the accounƟng list of processes and checks Įle permis-
sions of each process to idenƟfy unauthorized read access to Įles. It returns a number of results.
funcƟon traverse_process_list (p) %{
char line [100];
struct task_struct *t;
struct Įle *f;
int bit ;
rcu_read_lock ();
list_for_each_entry_rcu ( t ,

&(( struct task_struct *)( long)STAP_ARG_p)−>tasks, tasks) {
struct group_info *gi = t−>real_cred−>group_info;
for ( f = Įles_fdtable ( t−>Įles )−>fd[

bit = Įnd_Įrst_bit ( Įles_fdtable ((unsigned long *)t−>Įles )−>open_fds,
Įles_fdtable ( t−>Įles )−>max_fds)];

bit < Įles_fdtable ( t−>Įles )−>max_fds;
f = Įles_fdtable ( t−>Įles )−>fd[
bit = Įnd_next_bit ( Įles_fdtable ((unsigned long *)t−>Įles )−>open_fds,
Įles_fdtable ( t−>Įles )−>max_fds, bit + 1)]) {

if ( f && f−>f_path.dentry) {
int f_mode = f−>f_mode;
int f_owner_euid = f−>f_owner.euid;
int ecred_fsuid = t−>real_cred−>fsuid;
int f_inode_mode = f−>f_path.dentry−>d_inode−>i_mode;
const char *f_name = f−>f_path.dentry−>d_name.name;
int i = 0, found_gid = 0;
for ( i = 0; i < gi−>ngroups; i++) {
if ( f−>f_cred−>egid == gi−>small_block[i ]) {
found_gid = 1;
break;

}
}
if (( f_mode&1) && ((f_owner_euid != ecred_fsuid )

|| (!( f_inode_mode&400)))
&& ((!found_gid) || (!( f_inode_mode&40)))
&& (!(f_inode_mode&4))) {

sprinƞ ( line , ”%s(%d): %s\n”, t−>comm, t−>pid, f_name);
strlcat (STAP_RETVALUE, line, MAXSTRINGLEN);

}
}

}
}
rcu_read_unlock ();

%}

probe begin { prinƞ (”%s\n”, check_privileges_process_list ( task_current ()))}
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A.4 DiagnosƟc tasks with Öi�Ê Ø½, Systemtap, and DTrace
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